research

I’m interested in self-supervised learning, representation learning, curiosity-based exploration, and leveraging internet-scale models and data. I am keen to draw inspiration from intelligence in humans and nature—especially as a goal-post rather than a blueprint. My long-term goal is to develop intelligent agents that can generalize and continually adapt as robustly and efficiently as humans do, allowing them to be safely deployed in the real world.

Publications

2024

  1. cambrian.png
    Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs
    Shengbang TongEllis BrownPenghao Wu ,  Sanghyun Woo ,  Manoj Middepogu ,  Sai Charitha Akula ,  Jihan Yang ,  Shusheng Yang ,  Adithya Iyer ,  Xichen Pan ,  Austin Wang ,  Rob FergusYann LeCun ,  and  Saining Xie
    arXiv preprint arXiv:2406.16860, 2024
  2. virl.webp
    V-IRL: Grounding Virtual Intelligence in Real Life
    Jihan Yang ,  Runyu Ding ,  Ellis Brown ,  Xiaojuan Qi ,  and  Saining Xie
    arXiv preprint arXiv:2402.03310, 2024

2023

  1. Master’s Thesis
    Online Representation Learning on the Open Web
    Ellis Brown
    Carnegie Mellon University , 2023
  2. diffusion_classifier.jpg
    Your Diffusion Model is Secretly a Zero-Shot Classifier
    Alexander C. LiMihir PrabhudesaiShivam DuggalEllis Brown ,  and  Deepak Pathak
    In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) , 2023
  3. internet_explorer.gif
    Internet Explorer: Targeted Representation Learning on the Open Web
    Alexander C. Li*Ellis Brown*Alexei A. Efros ,  and  Deepak Pathak
    In International Conference on Machine Learning , 2023

2022

  1. 2022_eccv_sslwin.png
    Internet Curiosity: Directed Unsupervised Learning on Uncurated Internet Data
    Alexander C. Li*Ellis Brown*Alexei A. Efros ,  and  Deepak Pathak
    In European Conference on Computer Vision Workshop on “Self Supervised Learning: What is Next?” , 2022

2018

  1. 2018_stts.gif
    An Architecture for Spatiotemporal Template-Based Search
    Ellis Brown ,  Soobeen Park ,  Noel Wardord ,  Adriane Seiffert ,  Kazuhiko Kawamura ,  Joseph Lappin ,  and  Maithilee Kunda
    Advances in Cognitive Systems, 2018
  2. ACS-18
    SpatioTemporal Template-based Search: An Architecture for Spatiotemporal Template-Based Search
    Ellis Brown ,  Soobeen Park ,  Noel Warford ,  Adriane Seiffert ,  Kazuhiko Kawamura ,  Joe Lappin ,  and  Maithilee Kunda
    In Proceedings of the 6th Conference on Advances in Cognitive Systems , Aug 2018



Talks

2021

  1. julia_firstorder.jpeg
    Linearly Constrained Separable Optimization
    Ellis Brown ,  Nicholas Moehle ,  and  Mykel J. Kochenderfer
    In JuliaCon 2021 JuMP Track , Jul 2021

2019

  1. AISES-19
    Modeling Uncertainty in Bayesian Neural Networks with Dropout: The effect of weight prior and network architecture selection
    Ellis Brown* ,  Melanie Manko* ,  and  Ethan Matlin*
    In American Indian Science and Engineering Society National Conference , Oct 2019
    🎖️ Third Place, Graduate Student Research Competition

2017

  1. AISES-17
    Computational Cognitive Systems to Model Information Salience
    Ellis Brown ,  Adriane Seiffert ,  Noel Warford ,  Soobeen Park ,  and  Maithilee Kunda
    In American Indian Science and Engineering Society National Conference , Sep 2017



Reports

2022

  1. CMU 16-824
    Self-Supervised Representation Learning via Curiosity-Driven Exploration
    Alvin Shek ,  Ellis Brown ,  Nilay Pande ,  and  David Noursi
    May 2022

2021

  1. CMU 16-811
    Scaling Interpretable Reinforcement Learning via Decision Trees to Minecraft
    Ellis Brown ,  and  Aaron M. Roth
    Dec 2021

2020

  1. Stanford CS 361
    Securities Lending Policy Optimization
    Ellis Brown
    Jun 2020

2019

  1. Columbia CS E6699
    Modeling Uncertainty in Bayesian Neural Networks with Dropout
    Ellis Brown* ,  Melanie Manko* ,  and  Ethan Matlin*
    May 2019