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Neural Networks trained with 

Dropout can be modified to give 

uncertainty estimates which 

depend on the choice of prior 

distribution over weights and

network architecture.

Motivation: 
• Neural Networks (NNs) are really good at predicting 

stuff. But what about when they’re wrong? 

• It is useful to know the uncertainty of a NN’s prediction, 

rather than just a point estimate
• E.g., a self-driving car could alert its driver that it is uncertain 

about conditions rather than confidently making a decision 

that could be dangerous

• The Bayesian paradigm is natural framework for modelling 

uncertainty, and has been applied to NNs since the 1990s

• “Posterior” distribution of weights given the data

P ω X, Y = P Y X,ω P(ω)
P Y X)

• Bayesian NNs trained with Dropout are a practical way 

to model this uncertainty, and have theoretical 

foundations relating them to Variational Inference 

approximating Gaussian Process posteriors

Theoretical Background
Gaussian Process (GP)
• An infinite-dimensional stochastic process such that every finite 

collection of random variables generated by the process is 

normally distributed 

• Distribution over all functions consistent with the data

Infinite NN ⇔GP
• 1 hidden layer, infinite neurons

• Bounded nonlinearities (activation functions)

• Weights are i.i.d. with zero mean and finite variance

How Can We Approximate This Posterior?
• Monte Carlo techniques

• Variational Inference

• … neither scale with big networks or data

Dropout ⇔Variational Inference (VI) in GP
• Dropout is a stochastic regularization technique that is widely 

adopted

• Randomly switch on/off different neurons during training to 

prevent overfitting

• Take any network trained with dropout, and you can compute 

uncertainty information with little effort

• Use dropout during prediction, drawsing a sample of point 

estimates with various dropout initializations

Depth, Width, and Convergence to GP

Does the infinite width single layer network convergence to GP result hold for 
a finite network?
With any number of neurons wide that is feasible to train on a standard laptop, the 
single layer network doesn’t approach a GP with squared exponential covariance. 
Depth on the other hand seems to help a lot. This result makes sense since there 
have been a number of papers recently covering the expressive power of depth 
(Telgarsky, 2015 & 2016; Yarotsky, 2017; Liang and Srikant, 2016; Eldan and 
Shamir, 2015). 

Experiment 3: In practice though we have only finite
Networks

(a) NN (Gaussian Nonlinearity, 1
Hidden Layer);
GP (Squared Exponential
Covariance)

(b) NN (Gaussian Nonlinearity, 5
Hidden Layers);
GP (Squared Exponential
Covariance)
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(a)  NN (Gaussian Nonlinearity, 1 Layer)
GP (Squared Exponential Covariance) 

(b)  NN (Gaussian Nonlinearity, 5 Layers)
GP (Squared Exponential Covariance) 

Plot Key
• Black line: 

dataset1

• Bold lines: 
point estimates

• Bands: 
uncertainties
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Net Architecture
• 5 fully-connected layers
• 1024 neurons
• ReLU activations
• Dropout prob: 0.1

Plot Creation
• 100 forward passes
• Re-sample dropped-out 

neurons each pass

Plot Key
• Red line: dataset1

• Black line: mean of 
posterior, i.e., point 
estimate

• Blue bands: IQR of 
posterior, i.e., 
uncertainty

1 Mauna Loa CO2 concentrations 
dataset

Activation Functions & Uncertainty Estimates

Uncertainty behavior on data far from what has been observed

Each plot shows the uncertainty estimate produced by various choices of activation 
function with identical network structure and training data. The linear (b), ReLU (c), 
and eLU (a) activation functions yield uncertainty bounds that fan out linearly. For 
these nonlinearities, this makes intuitive sense as linear is, of course, linear and 
ReLU and eLU contain linear components. Softplus yields uncertainty bounds that 
seem to fan out nonlinearly, with negative skewness . In all cases, the uncertainty 
bands fan out as they move farther from the training data which is exactly what we’d 
want and expect. 

Note: In some experiments, the network was not trained long enough to converge. As our primary concern is the behavior of 
the uncertainty estimates as the model observes data far from the data it has already seen, we leave this to further 
investigation with more computational resources 

Experiment 4: What prior should I choose? How do weight
priors correspond to function priors?
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Figure: ReLU (Untrained), 5 Hidden Layers, 1024 neurons per layer

Ellis Brown, Melanie Manko, Ethan Matlin (Columbia University)Modelling Uncertainty with Bayesian Neural Netwowkrs October 4, 2019 13 / 19

Experiment 4: What prior should I choose? How do weight
priors correspond to function priors?

W ⇠ N (0, 0.05) W ⇠ Unif [�0.05, 0.05]

W ⇠ N
⇣
0,
q

2

Nin+Nout

⌘
W ⇠ Unif

h
�
q

6

Nin
,
q

6

Nin

i

Figure: ReLU (Untrained), 5 Hidden Layers, 1024 neurons per layer

Ellis Brown, Melanie Manko, Ethan Matlin (Columbia University)Modelling Uncertainty with Bayesian Neural Netwowkrs October 4, 2019 13 / 19

Uncertainty estimates on [-2, 2] given by untrained networks with various 
weight priors.
Each plot shows the bias in our uncertainty measure that various choices of prior 
distributions for weight initialization introduce into the network before training on 
data. Since, we don’t know where in the data-space we want our model to be more 
and less uncertain before seeing the data, we want the variance of our distribution to 
be relatively constant across values of x. The plots on the bottom row—which use the 
Xavier Normalization—satisfy this criterion the best. The basic idea of this procedure 
is to normalize variance per layer based on the number of inputs and outputs.

Certain priors introduce bias into the network. 
Scaling variance by layer reduces this bias. 

Net Architecture
• 5 fully-connected layers
• 1024 neurons
• ReLU activations

Plot Creation
• 40 forward passes through 

the untrained network
• Reinitialize weights each pass

Plot Key
• Light blue lines: output of 

each pass
• Black line: mean
• Blue bands: IQR, i.e., 

uncertainty

Experiment 4: What prior should I choose? How do weight
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