
Online Representation Learning

on the Open Web

Ellis L. Brown, II

CMU-CS-23-107

May 2023

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee

Deepak Pathak Carnegie Mellon University, Chair
Deva Ramanan Carnegie Mellon University
Alexei A. Efros University of California, Berkeley

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright © 2023 Ellis L. Brown, II

This work is supported by NSF IIS-2024594 and ONR MURI N00014-22-1-2773.

Keywords: machine learning, deep learning, computer vision, representation learn-
ing, self-supervised learning, active learning, online learning, internet

To my parents, John and Amy, for their unwavering love and support,
and to Mara for putting up with all of the madness.

Abstract

Modern vision models typically rely on fine-tuning general-purpose mod-
els pre-trained on large, static datasets. These general-purpose models only
capture the knowledge within their pre-training datasets, which are tiny, out-
of-date snapshots of the Internet—where billions of images are uploaded daily.

We suggest in this thesis an alternate approach: rather than hoping our
static datasets transfer to our desired tasks after large-scale pre-training, we
propose dynamically utilizing the Internet to quickly train a small-scale model
that does extremely well on the task at hand. Our approach, called Inter-
net Explorer, explores the web in a self-supervised manner to progressively
find relevant examples that improve performance on a desired target dataset.
It cycles between searching for images on the Internet with text queries, self-
supervised training on downloaded images, determining which images were use-
ful, and prioritizing what to search for next.

We evaluate Internet Explorer across several datasets and show that it
outperforms or matches CLIP oracle performance by using just a single GPU
desktop to actively query the Internet for 30–40 hours.

The source code for this thesis document is available in open source form at:

https://github.com/ellisbrown/cmu-masters-thesis

https://github.com/ellisbrown/cmu-masters-thesis

Acknowledgments

I have been incredibly fortunate and privileged throughout my life to have
been given many opportunities that have led me to pursue this thesis research.
Thanks to all of the people who have provided me with the environment, safety,
health, financial well-being, love, joy, support, and knowledge to produce this
work.

First and foremost, I would like to thank my advisor, Deepak Pathak, for
his guidance, support, and mentorship throughout my Masters. I am incred-
ibly thankful for the unparalleled opportunities he has given me to grow as a
researcher, and for taking an early bet on me. I would also like to thank my
close collaborator, Alyosha Efros, for his mentorship and guidance throughout
my Masters. It has been an incredible experience to learn from and work with
him. I would also like to thank Deva Ramanan for taking the time to serve on
my committee and providing early feedback on my work.

Next, I would like to give a special thanks to Alex Li for his mentorship,
guidance, collaboration, and friendship throughout my Masters. I could not
have asked for a better collaborator on the Internet work—I hope that we have
the opportunity to work together again in the future.

Thanks to all of my other close friends at CMU in Smith Hall, NSH, and
beyond for making my time here fly by. This includes (in alphabetic order)
Ananye Agarwal, Sacha Bartholme, Shikhar Bahl, Sudeep Dasari, Shivam Dug-
gal, Xuxin Cheng, Zipeng Fu, Helen Jiang, Aditya Kannan, Tanmay Kulkarni,
Peter Manohar, Russell Mendonca, David Noursi, Nilay Pande, Mihir Prab-
hudesai, Alvin Shek, Aaron Trowbridge, Shagun Uppal, Haoyu Xiong, Jason
Zhang, and many others.

Looking back, my teachers and mentors earlier in my life ignited my in-
terests in computer science and mathematics and later opened my eyes to the
world of research. In high school, I was fortunate to have wonderful mathemat-
ics teachers in Joan Llufrio and Amy Scheer, who taught me to love problem
solving; at the same time, my water polo coach, Don Casey, taught me the
importance of hard work, discipline, and delayed gratification. During under-
grad at Vanderbilt, Gerald Roth and Graham Hemingway taught me to love
computer science, and I will be forever grateful to Maithilee Kunda for taking
a chance on me and introducing me to artificial intelligence and the world of
research as a second semester senior.

After Vanderbilt at BlackRock, I was fortunate to have the opportunity to
work with an incredible cast of people at their AI Labs, who helped cement my
desire to pursue graduate school. I am especially thankful to Rachel Schutt for
selecting me as a founding member of the group, and for her mentorship and
guidance throughout my time there. I am also thankful to my manager, Alex
McKay, for his mentorship and guidance, and my close friends and colleagues,
including Melanie Manko, Don Weidner, Mike Sereiko, Sri Bhupatiraju, Jeevan
Acharya, Jason Motylinski, Shawn Simpson, Jack Gindi, Hristo Paskov, Nick

Moehle, Steven Diamond, Shane Barrett, and others. I would also like to
thank our senior advisors for their close guidance and support, including Mykel
Kochenderfer, Stephen Boyd, Trevor Hastie, and Rob Tibshirani.

I would be remiss not to mention the support I have received from the Na-
tive American community throughout my graduate school journey. From my
first research presentation opportunity at AISES, the guidance on application
procedures and personal mentorship, and financial support in the form of schol-
arships through AISES and the Osage Nation—it is safe to say that I would
not be where I am today without this wonderful community.

On the personal side, I would like to thank all of my other friends and family
members that have provided me with an immense amount of love, support, and
encouragement throughout the years—especially my girlfriend Mara, who has
been by my side through it all. Thanks to my parents John and Amy; siblings
Marnie and Evan; and the rest of my extended family for raising me in a
wonderful environment and encouraging me at every step along the way.

Contents

1 Introduction 1

2 Method 5

2.1 Internet Explorer: An Online Agent . 5

2.1.1 Text-to-image Search . 5

2.1.2 Text Query Generation . 5

2.1.3 Self-supervised Training . 7

2.1.4 Image Relevance Reward . 7

2.1.5 Estimating Reward for Unseen Concepts 9

2.1.6 Query sampling distribution . 10

2.1.7 Provable speedup in relevant query identification 11

2.2 Method Details . 12

2.2.1 WordNet Lemmas . 12

2.2.2 GPT-J Descriptor Prompting . 12

2.2.3 Concept Vocabulary Size . 13

2.2.4 Query Model Details . 13

2.2.5 Training Details . 14

2.2.6 Hyperparameters . 15

2.2.7 Image Licenses . 15

3 Experimental Setting and Results 17

3.1 Experimental Setting . 17

3.1.1 Self-supervised Exploration . 17

3.1.2 Label Set-guided Exploration . 17

3.1.3 Datasets . 18

3.1.4 Evaluation Metrics . 19

3.2 Results and Analysis . 20

3.2.1 Self-supervised Results . 20

3.2.2 Self-supervised Exploration Behavior 21

3.2.3 Label Set-guided Results . 21

3.2.4 Learning from other sources of data 22

3.2.5 Are we finding the entire test set online? 24

3.2.6 Effect of image reward type . 25

3.2.7 Self-supervised Exploration Behavior on Other Datasets 27

ix

4 Conclusions and Future Directions 31

Bibliography 33

x

List of Figures

1.1 Given unlabeled data for a target task, our approach, Internet Explorer,
searches the Internet to progressively find more and more relevant training
data via self-supervised exploration. 2

2.1 Overview of Internet Explorer. Our goal is to efficiently search the In-
ternet for images that improve our performance on a target dataset. In each
iteration, we first generate text queries by combining a concept sampled
from a learned distribution with a GPT-generated descriptor (§2.1.2, 2.1.6).
Next, we query search engines with the resulting phrase and download the
top 100 image results (§2.1.1, 3.2.4). We add these images to the set of
previously downloaded images and perform self-supervised training on the
combined dataset (§2.1.3). Finally, we evaluate the relevance of the new im-
ages and update our concept distribution to increase the likelihood of similar
queries if their images were similar to the target dataset (§2.1.4, 2.1.5). . . 6

2.2 Learned concept sampling distribution. Given estimated scores for
each of the 146,347 concepts, we need to choose how often to sample each one
in order to balance exploration and exploitation. Top: we scale our scores
to a desired temperature, then take the softmax to obtain a distribution
over concepts. Finally, we create tiers so that the top 250 concepts have
80% of the probability mass, and the next 750 have 10%. This ensures
that we sample enough from the top 1,000 concepts while still exploring
other concepts with lower scores. Bottom: the top 1000 concepts are only
sampled a tiny fraction of the time without tiering. 10

3.1 Learning curves in self-supervised setting. k-NN validation accuracy
improves across iterations on each target dataset. Without using any la-
bels, Internet Explorer identifies and focuses on relevant concepts for each
target dataset. This allows it to find more useful data than the base-
line that searches for random concepts. Adding GPT-generated descriptors
(Ours++) further improves performance by enabling Internet Explorer to
generate diverse views of useful concepts. 18

3.2 Learning curves in label set-guided setting. Using knowledge of the
label set improves the performance of all methods. Internet Explorer (Ours)
outperforms the baselines on all datasets, and adding GPT-generated de-
scriptors (Ours++) further improves performance. 18

xi

3.3 Self-supervised concept discovery on Pets dataset. When targeting
the Pets dataset, self-supervised Internet Explorer quickly estimates high
reward for concepts from the cat category (82 concepts) and dog category
(246 concepts). It is also able to identify felines that are not cats (e.g.,
tigers) and canines that are not dogs (e.g., wolves), although it gives them
lower reward on average. Finding these categories is especially challenging,
since they comprise only 460/146,347 = 0.3% of the vocabulary. 20

3.4 Progression of downloaded images across training. Top: samples of
Oxford-IIIT Pets images. Bottom: samples of images queried by Internet
Explorer across iterations. As the method learns, it makes queries that are
progressively more relevant to the target dataset. 21

3.5 Comparison of different search engines. We show images for the
“spaghetti bolognese” class in the Food101 dataset, as well as 20 search re-
sults for “spaghetti bolognese” from Google Images, Flickr, and LAION5B.
Google images are typically well-lit, aesthetic food blog pictures. In com-
parison, Flickr images are messier, darker, and capture a wider variety of
real-world conditions. LAION-5B images lie somewhere in the middle, but
contain text overlays much more frequently. Duplicate image results are also
common. 23

3.7 Learning from Flickr and LAION-5B. Even with the noisy search re-
sults returned by Flickr and LAION, Internet Explorer still continuously
improves performance. 24

3.6 Custom LAION-5B search engine. We build a custom text-to-image
search engine that finds images within the LAION-5B dataset by doing
nearest neighbor search in text embedding space—using no image features
whatsoever. 24

3.8 Top-10 most similar online images. The left column shows randomly
chosen test set images from each dataset, and the right block shows the 10
most similar images in the downloaded data for each test image, ranked left
to right. 26

3.9 Top images preferred by different rewards. We show the top 5 down-
loaded images ranked by 3 possible image rewards on the Food dataset.
15-NN (ours) prefers a variety of food images, whereas MoCo prefers noisy
images out of the training distribution. 1-NN is thrown off by outliers in
the Food dataset and thus prefers black images, text, and zebras. 27

3.10 Progression of downloaded Birdsnap images. This corresponds to
Ours++ without using label set information. 28

3.11 Progression of downloaded Flowers images. This corresponds to Ours++
without using label set information. 28

3.12 Progression of downloaded Food images. This corresponds to Ours++
without using label set information. 29

3.13 Progression of downloaded VOC2007 images. This corresponds to
Ours++ without using label set information. 29

xii

List of Tables

2.1 Target Dataset “Category”. 14

2.2 Internet Explorer hyperparameters. 15

3.1 Linear probing accuracy. Our method significantly improves the starting
checkpoint performance in just 40 additional hours of training. We show
the performance change from the starting MoCo-v3 (ImageNet + target)
initialization in green/red. CLIP numbers correspond to linear probe (which
is higher than its zero-shot accuracy). Internet Explorer reaches or often
surpasses CLIP (oracle with 2x params) performance on each dataset while
using 2.5% as much compute and 0.5% as much data. †For VOC2007, we
do not do ImageNet pre-training because ImageNet is too close to VOC2007. 19

3.2 Linear probe accuracy with other search engines. Internet Explorer
improves its performance using any search engine, including Flickr and our
custom text-based LAION search engine. 22

3.3 Number of leaked test set images. We use image hashing to compute the
fraction of test images present in the set of images downloaded by Internet
Explorer. Surprisingly, the training/validation sets of these datasets already
leak a small fraction of the test sets—Pets is the most egregious, with 0.57%
of test images leaked. For each dataset, we show the test set size, the
number of leaked test images, and the percentage of the test set that this
represents in blue; for each version of our method, we show the total number
of leaked images that the model had access to, and the percentage increase
this represents over the dataset’s leakage in blue. Leakage numbers for our
methods include this train-test leakage, since our methods also train on the
target dataset’s training set. Internet Explorer only finds a tiny fraction of
test set images online, and it only uses them for self-supervised training, so
there is no label leakage. Overall, Internet Explorer’s increase in accuracy
cannot be explained by test set leakage, so it must be improving performance
through better feature learning and generalization. 25

3.4 Ablation on type of image reward. MoCo loss does not identify relevant
concepts, and k = 1 similarity is too noisy to identify useful concepts. . . 27

xiii

List of Algorithms

1 Internet Explorer . 8

xiv

Chapter 1
Introduction

Suppose you have a small dataset and need to train a model for some task, say classification.
A pipeline that has become standard today is to download the latest pre-trained deep
network and fine-tune it on your own small dataset. This pre-trained model used to
be ImageNet-based [Den+09; He+16] and now would probably be CLIP [Rad+21]. The
implicit goal set by the community for such pre-trained models is that they should transfer
well to any kind of downstream task not known in advance. This has led to a race to build
ultra-large-scale models in terms of computation, model size, and dataset size. But is this
goal of building an “omniscient” pre-trained model that can work on any future downstream
task even feasible? Perhaps not because our world is continually changing. Although
the size of the pretraining datasets has grown from 1.2M [Den+09] to 400M [Sch+21]
images, what has not changed at all is their nature: these datasets are curated, and, more
importantly, static. For instance, the portion of ImageNet curated before 2007 has no
idea what an iPhone is. Furthermore, although a few hundred million images represent
a staggering quantity of visual data, they are minuscule compared to the entire Internet,
where billions of new photos are uploaded every day. Thus, current static datasets, however
big they become, fail to capture the richness and dynamic nature of the data available on
the Internet. Moreover, as our static datasets grow, they require increasingly inaccessible
amounts of compute.

In this thesis, we rethink the idea of a generic large-scale pretrained model and propose
an alternate paradigm of training a rather small-scale but up-to-date model geared towards
the specific downstream task of interest. To train such a model, we go beyond static
datasets and treat the Internet itself as a dynamic, open-ended dataset. Unlike conventional
datasets, which are expensive to increase and grow stale with time, the Internet is dynamic,
rich, grows automatically, and is always up to date. Its continuously evolving nature also
means we cannot hope to ever download it or train a model, whether large or small, on all
of it.

We propose that the Internet can be treated as a special kind of dataset—one that
exists out there, ready to be queried as needed to quickly train a customized model for
a desired task. We draw an analogy to reinforcement learning, where even though the
task is known, finding a policy that can generate the desired behavior is non-trivial due

1

static dataset

pre-train
once

fine-tune

model

Standard Pre-Training Setting

Internet

focus on
knowledge gaps

learn from
new datamodel

Our Setting: Continually Explore the Internet

target dataset

target dataset

Figure 1.1: Given unlabeled data for a target task, our approach, Internet Explorer,
searches the Internet to progressively find more and more relevant training data via self-
supervised exploration.

to the high complexity of the state space. Hence, most approaches rely on some form
of exploration to figure out what actions the agent should take so that it quickly finds
high-reward states. Inspired by this analogy, we formulate a disembodied, online agent we
call Internet Explorer, that actively searches the Internet using standard search engines to
find relevant visual data that improve feature quality on a target dataset (see Figure 1.1).
The agent’s actions are text queries made to search engines, and the observations are the
data obtained from the search.

The queries made by Internet Explorer improve over time. It cycles between searching
for images on the Internet with text queries, self-supervised training on downloaded images,
determining which images are relevant to the target dataset, and prioritizing what to search
for next (see Figure 2.1). We also bootstrap Internet Explorer using existing pre-trained
models such as MoCo-v3 [He+20] and obtain a significant boost on the target datasets.

Our setting is different from active learning [Set09], where the goal is to selectively
obtain labels for data points from a fixed dataset. In contrast, Internet Explorer continually
expands the size of its dataset and requires no labels for training, even from the target
dataset. Some prior works have also discussed ways to leverage the Internet as an additional
source of data. NELL [Car+10] proposed a way to continually scrape web pages to learn
new concepts and relationships, which are periodically curated by a human in the loop.

2

NEIL [CSG13] builds on the dictionary developed by NELL to search visual data to develop
visual relationships. Both are semi-supervised methods to gather general “common-sense”
knowledge from the Internet. In contrast, we perform an actively improving directed search
to perform well on target data, in a fully self-supervised manner. Recent work [Jia+21]
follows a similar setting but searches a static dataset and not the Internet.

We evaluate Internet Explorer across 5 datasets, including 4 fine-grained datasets and
PASCAL VOC. We search for relevant images using Google; however, the method is com-
patible with any text-based search engine or even a static dataset (see Section 3.2.4). We
compare against several strong baselines, including CLIP, on downstream tasks. Note that
CLIP acts as an oracle for our approach because it has likely already seen all or more
queries that Internet Explorer makes. In most scenarios, Internet Explorer either outper-
forms or matches CLIP oracle using only a single 3090 GPU desktop machine that runs
for 30–40 hours, makes over 10K progressively improving queries, and downloads over 1M
relevant Internet images for each target dataset.

3

4

Chapter 2
Method

2.1 Internet Explorer: An Online Agent

We focus on the problem of efficiently improving representations for some target dataset
by acquiring Internet data. We make as few assumptions as possible and assume that
we have only unlabeled training data from the target dataset. Successful representation
learning in this setting would lead to better performance on the target dataset distribution
for standard tasks like classification and detection, as well as others where the labels are
not semantic (e.g., depth prediction or robotics). An overview of the Internet Explorer
method is depicted in Figure 2.1 and described in Algorithm 1.

2.1.1 Text-to-image Search

We discover and download images from the full breadth of the Internet by querying text-to-
image search engines, which return images based on their captions and surrounding text.
Text-to-image search is fast, returns diverse images from across the Internet, and enables
searches for vastly different queries simultaneously. Note that text-to-image search is noisy
and makes use of weak supervision (the image-text pairing on webpages). Thus, we only
perform self-supervised training on the downloaded images. We use a public codebase
to query Google Images, which can download the top 100 images for each query [Vas15;
Cli20]. We also try other search engines in Section 3.2.4.

2.1.2 Text Query Generation

As text queries are our only input interface with the Internet, it is crucial that we can
generate diverse queries that correspond to a variety of visual categories. Specificity is also
important. Once a useful visual category is identified, generating fine-grained variants of
the query is necessary to obtain data for all visual variations in the category. We construct
queries by combining two components:

1. Concepts specify semantic categories such as people, places, or objects.
2. Descriptors are modifiers that generate variations in appearance.

5

We draw our concepts from the WordNet hierarchy [Mil95], which consists of 146,347
noun lemmas. Not all of these lemmas are visual, but the vocabulary still covers an
incredible range of topics (see examples in Section 2.2.1). To generate a text query, we
first sample a concept from a learned distribution over our vocabulary. This discrete
distribution is defined by our estimates of how relevant each concept in the vocabulary is
at the current time (see Section 2.1.4 for details on estimating rewards and Section 2.1.6
for the distribution). Given a sampled concept, we can generate a descriptor by prompting
a GPT-J language model [WK21] with examples of descriptor-concept pairs (details and
examples in Section 2.2.2). Finally, as shown in Step 1 of Figure 2.1, we simply concatenate
the concept and descriptor. If our concept is “duck” and the GPT-generated descriptor is
“baby,” our search engine query will be “baby duck”.

Internet Explorer Method
1. Sample Query

Learned concept distribution

BMW, sunflower, . . . , duck

GPT

2. Internet Image Search

3. Self-Supervised Training

encoder

contrastive
loss

4. Update Concept Distribution
calculate
reward

encoder

increase probability of useful concepts

BMW, sunflower, . . . , duck

target dataset

“duck”“baby” +

Figure 2.1: Overview of Internet Explorer. Our goal is to efficiently search the Internet
for images that improve our performance on a target dataset. In each iteration, we first
generate text queries by combining a concept sampled from a learned distribution with a
GPT-generated descriptor (§2.1.2, 2.1.6). Next, we query search engines with the resulting
phrase and download the top 100 image results (§2.1.1, 3.2.4). We add these images to the
set of previously downloaded images and perform self-supervised training on the combined
dataset (§2.1.3). Finally, we evaluate the relevance of the new images and update our
concept distribution to increase the likelihood of similar queries if their images were similar
to the target dataset (§2.1.4, 2.1.5).

6

2.1.3 Self-supervised Training

We use self-supervised learning (SSL) to learn useful representations from the unlabeled
images that we download from the Internet. Internet Explorer is compatible with any SSL
algorithm that uses images or image-text pairs, including contrastive [He+20; Che+20],
non-contrastive [Gri+20; Zbo+21; BPL21; Car+21], masking-based [BDW21; He+22], or
multimodal [Rad+21] approaches. For speed and stability reasons, we use the MoCo-v3
algorithm [CXH21], which trains encoders fq and fk on augmentations (x1, x2) of the same
image to output vectors q = fq(x1) and k = fk(x2). fq is trained to minimize the InfoNCE
loss [OLV18]:

Lq = − log
exp(q · k+/τ)

exp(q · k+/τ) +
∑

k− exp(q · k−/τ)
(2.1)

where k+ corresponds to fk’s output on the other augmentation of the image used to
compute q, and the set of negative examples {k−} corresponds to fk’s output on other
images in the batch. The temperature τ is set to 1 by default. fk consists of a base
encoder, a projection MLP, and a prediction head, whereas fq is the exponential moving
average of the base encoder and projection MLP from fk. By training q and k+ to be
similar across image augmentations, MoCo-v3 encourages the network to learn high-level
semantic features.

Before turning to the Internet, we initialize a ResNet-50 model [He+16] using a MoCo-
v3 checkpoint trained offline for 100 epochs on ImageNet and then fine-tuned on the target
dataset. Without using labels, we select the best starting checkpoint by early stopping on
the SSL loss, which highly correlates with target accuracy [LEP22]. In each iteration of
our method, we use MoCo-v3 to fine-tune on a mixture of newly downloaded, previously
downloaded, and target dataset images.

2.1.4 Image Relevance Reward

We want to rank newly downloaded images by how much they improve our features for the
target dataset. This allows us to (a) prioritize taking gradient steps on useful images, and
(b) understand what to search for in subsequent iterations. Unfortunately, it is challenging
to directly measure the effect of an individual training example on performance. Numer-
ous techniques have been proposed [KL17; FZ20; PGD21; Ily+22], but they all require
extensive and repeated training on new images to estimate their impact.

Instead of trying to precisely measure what is learned from each image, we use its
similarity to the target dataset as a proxy for being relevant to training. We rank the
downloaded images by their similarity in representation space to the target dataset images;
those most similar to the target dataset induce larger contrastive loss since each exp(q ·k−)
term in the denominator of Eq. 2.1 is larger when the negative examples {k−} are closer
to q. These “hard negatives” [Rob+20; SKP15; Oh +16; Har+17; Wu+17; Ge18] yield
larger and more informative gradients and should result in the biggest improvement in
representation quality. Thus, overloading notation for k, we compute the reward for a
particular image as its representation’s average cosine similarity to its k closest neighbors

7

Algorithm 1 Internet Explorer

1: Input:
target dataset D
SSL algorithm A
search engine SE
encoder f : RH×W×3 → Rd

image reward function r
vocabulary V = {ci}Ci=1, where C is # concepts
concepts/itr M
query results/search Q
GPT-based concept → descriptor function GPTDesc

concept distribution function CalcProb

2: Initialize replay buffer B ← ∅
3: Initialize concept distribution p = Uniform{1, C}
4: for iteration = 1, 2, . . . do
5: for i = 1, . . . ,M do
6: Sample concept ci ∼ p(V) (§2.1.2)
7: Sample descriptor di ← GPTDesc(ci) (§2.2.2)
8: Image search {I ij}Qj=1 ← SE(di + ci, Q) (§2.1.1)
9: Calc. reward rci ← 1

Q

∑Q
j=1 r(f,D, I ij) (§2.1.4)

10: end for
11: Bnew = {I1j }Qj=1 ∪ · · · ∪ {IMj }Qj=1

12: SSL training: A(f,D ∪ B ∪ Bnew) (§2.1.3)
13: Add to buffer: B ← B ∪ Top50%(Bnew, r)
14: Predict all concept rewards rconcept from {rci} (§2.1.5)
15: Update concept dist p← CalcProb(rconcept) (§2.1.6)
16: end for

in the target dataset. Given an image encoder fk : RH×W×3 → Rd, an unlabeled target
dataset D = {xi}Ni=1, and a new image y to evaluate, the reward is calculated:

r(fk,D, y) = max
I⊂{1,...,N};

|I|=k

1

k

∑
i∈I

Scos (fk(xi), fk(y)) (2.2)

where Scos is the cosine similarity. A previous metric for identifying relevant data [Jia+21]
used k = 1 nearest neighbors, but we found that this was too noisy and allowed high
rewards for outlier target images to distract our search. We instead use k = 15 to improve
the accuracy of our relevance estimation. In Section 3.2.6, we compare our reward to alter-
natives and explore their failure modes. This reward is used for two purposes: determining
which of the downloaded images to train on and, subsequently, which concepts would be
useful to search for next.

Which images to train on. Many newly downloaded images are not worth training
on, since they come from unrelated queries or are noisy results from the search engine.

8

Thus, at the end of each iteration, we rank the newly downloaded images by their reward
and save the top 50% to a replay buffer that we maintain across iterations. In subsequent
iterations, we continue training on this filtered data.

Determining which concepts are useful. When we search for a concept and get
back Q image results {Ii}Qi=1, we take the average of the top 10 image-level rewards ri =
r(fk,D, Ii) and use that as a concept-level score. This gives us an accurate measure of the
relevance of a particular query and reduces the impact of noisy search results.

2.1.5 Estimating Reward for Unseen Concepts

Concept Embeddings

Since our vocabulary contains hundreds of thousands of concepts, it would be inefficient
to test whether each possible query yields relevant images. Luckily, we can estimate the
quality of queries by using the observed rewards of the queries searched so far. Humans
can do this effortlessly due to our understanding of what each concept means. To us,
it is obvious that if querying “duck” yielded useful images for this dataset and “BMW”
did not, then we should search for more images of animals and not cars. We want to
give our method the same understanding of concept meaning, so we embed our 146,347
WordNet concepts into a 384-dimensional space using a pre-trained sentence similarity
model [RG19]. We provide relevant context about each concept to the text embedding
model by using additional information from WordNet in the following template:

{lemma} ({hypernym}): {definition}
For example, the text that is embedded for the concept “Chihuahua” is:

Chihuahua (toy dog): an old breed of tiny short-haired dog with protruding

eyes from Mexico held to antedate Aztec civilization.

Predicting Rewards

Now that we have a representation of each concept, we can estimate the reward for untried
concepts by using the rewards of concepts that we have already searched for. We use
Gaussian process regression (GPR) [WR95] over the text embeddings {ei} to predict the
concept-level reward r(ei) for untried concepts. GPR models the function outputs for any
set of inputs {r(ei)} as jointly Gaussian random variables. The covariance of any two
variables r(ei) and r(ej) is determined by the kernel k(ei, ej), which we set as the default

RBF kernel k(ei, ej) = exp(
−∥ei−ej∥2

2
). Given the observed rewards for concepts Robs =

{r(ei)}, GPR calculates the posterior distribution over the rewards for an unobserved
concept e′, P (r(e′) | {r(ei)} = Robs). Given that the joint distribution P ({r(ei)}, r(e′))
is Gaussian, the posterior is also Gaussian with mean µ(e′) and variance σ(e′)2. The
locality provided by the RBF kernel enables reasonable reward predictions, and having
a distribution over rewards instead of a point estimate allows us to explore potentially
good concepts. We encourage exploration by setting the score of unobserved concepts to
µ(ei) + σ(ei).

9

100 101 102 103 104 105

10−5

10−3

Pr
ob

ab
ili

ty

Scale, softmax
Scale, softmax, tier

100 101 102 103 104 105

Sorted Concept Index (log scale)

0.0

0.5

1.0
C

um
ul

at
iv

e
Pr

ob
.

Figure 2.2: Learned concept sampling distribution. Given estimated scores for each
of the 146,347 concepts, we need to choose how often to sample each one in order to balance
exploration and exploitation. Top: we scale our scores to a desired temperature, then take
the softmax to obtain a distribution over concepts. Finally, we create tiers so that the top
250 concepts have 80% of the probability mass, and the next 750 have 10%. This ensures
that we sample enough from the top 1,000 concepts while still exploring other concepts
with lower scores. Bottom: the top 1000 concepts are only sampled a tiny fraction of the
time without tiering.

A practical issue is that GPR does not scale well to large numbers of points, and fitting
the model after each iteration becomes prohibitively slow. To address this, we use GPR
for the first 10 iterations (256 queries × 100 images × 10 iterations ≈ 256,000 points),
and then switch to a simple ridge regression model that predicts solely the mean rewards
µ(ei)—and thus we eliminate the exploration term σ(ei) from the reward prediction. This
is a good tradeoff because we have a lot of data by this point, and we don’t need to explore
as much anymore. The number of iterations at which we switch to ridge regression is a
hyperparameter that can be tuned to balance exploration and exploitation + speed. We
found that 10 iterations to work well in practice.

2.1.6 Query sampling distribution

Once we have estimates for the quality of each concept, how do we determine what to
search for next? We face the age-old dilemma of exploration versus exploitation: we need
to sample the top concepts frequently enough to get relevant training data for SSL, while
at the same time, we need sufficient exploration of promising untried concepts.

We use a sampling-based approach based on Boltzmann exploration [Sut91]. Boltz-
mann exploration samples based on a scaled softmax distribution p(ci) ∝ exp(r(ci)/τ),
where τ is the temperature scaling. However, with a large vocabulary (action space) of

10

146,347 concepts, it becomes difficult to tune τ so that we sample the top concepts fre-
quently enough without being too skewed. Thus, we define a “tiering function” to adjust
the probability mass in specified intervals of our distribution. Given a sorted discrete prob-
ability distribution p, interval boundaries T0 = 0 < T1 < · · · < Tn, and interval masses
∆0, . . . ,∆n−1 such that

∑
i ∆i = 1, tiering computes a new distribution:

ptieri = ∆j
pi∑Tj+1

k=Tj
pk

for j s.t. Tj ≤ i < Tj+1 (2.3)

ptier is a new distribution such that
∑Tj+1

k=Tj
ptier = ∆j. We use T0 = 0, T1 = 250, T2 = 1,000,

T3 = 146,347, ∆0 = 0.8, ∆1 = 0.1, and ∆2 = 0.1. Simply put: we give the highest-
ranked 250 concepts 80% of the probability mass, the next 750 concepts 10%, and all
remaining concepts 10%. Figure 2.2 shows that tiering the scaled softmax distribution
samples frequently enough from the top concepts while a vanilla scaled softmax distribution
does not. Note that the untiered distribution would sample the top 1000 concepts only
≈ 0.1% of the time, while the tiered distribution samples them 90% of the time.

2.1.7 Provable speedup in relevant query identification

We now show that our method can provably speed up the time to identify all relevant con-
cepts in a dataset. Assume that our vocabulary of n concepts contains c · s ≪ n relevant
concepts, which are partitioned into c disjoint clusters of size s. We want to discover every
relevant concept by sampling concepts uniformly at random (with replacement) to test.
Assume that sampling a concept conclusively tells us whether it is relevant. Furthermore,
assume that we could optionally use a Gaussian process regression model which, if we’ve
sampled a relevant concept, tells us that all the concepts in its cluster are also relevant.

Lemma 1. Let Tbase be the expected time to identify every relevant concept without the
GPR, and TGPR be the expected time when exploiting the additional knowledge from the
GPR. Then, Tbase = nHc·s, TGPR = nHc

s
, and the speedup from GPR is Tbase

TGPR
≈ s log s.

Proof. This problem is a variant of the coupon collector problem. Let’s first compute Tbase

as the sum of expected times ti to identify the next relevant concept.

Tbase =
cs∑
i=1

ti (2.4)

=
cs∑
i=1

1

pi
(2.5)

=
cs∑
i=1

n

cs+ 1− i
(2.6)

= n
cs∑
i=1

1

cs+ 1− i
(2.7)

= nHcs (2.8)

11

where Hcs is the csth harmonic number. Similarly, we can compute TGPR as the sum of
expected times ti to identify the next relevant cluster.

TGPR =
c∑

i=1

ti (2.9)

=
c∑

i=1

1

pi
(2.10)

=
c∑

i=1

n

s(c+ 1− i)
(2.11)

=
n

s

c∑
i=1

1

c+ 1− i
(2.12)

=
nHc

s
(2.13)

The speedup is then
Tbase

TGPR

= s
Hcs

Hc

≈ s log s.

We find that in practical settings (e.g., the Pets example analyzed in Fig. 3.3), we can
accurately predict how many samples are required to discover all useful concepts. If the
vocabulary size is n ≈ 150,000, the number of clusters is about c = 2 (one for cats and
one for dogs), and the size of each cluster is about 150, then TGPR = 1500, which roughly
matches the 9 × 256 = 1792 queries it took to discover both cats and dogs in the Pets
dataset.

2.2 Method Details

2.2.1 WordNet Lemmas

We draw our concepts from the WordNet hierarchy [Mil95], which consists of 146,347 noun
lemmas. For reference, here are 32 randomly sampled concepts:

"resolution", "lodgment", "phycobilin", "acidosis", "widening", "human

face", "family Crassulaceae", "sail", "Ipomoea imperialis", "Davis",

"prothrombin", "cease", "marsh clematis", "major power", "chump change",

"madcap", "junky", "pere david’s deer", "make-up", "genus Rumex", "gape",

"Brachychiton populneus", "bell morel", "wain", "friendly", "Principe",

"bottle green", "glycerol trimargarate", "water-shield", "San Joaquin

River", "woodsman", "pin".

2.2.2 GPT-J Descriptor Prompting

We use GPT-J-6B [WK21], a free, open-source autoregressive language model, to generate
useful descriptors for a given concept. We use the following prompt template:

12

"What are some words that describe the quality of ‘{concept}’?
The {concept} is frail.

The {concept} is red.

The {concept} is humongous.

The {concept} is tall.

The {concept} is"

We sample completions with a temperature of 0.9 and a max length of 100 tokens. We
truncate the completion after the first comma, period, underscore, or newline character
(including the special character). If the truncated completion is degenerate and contains
a duplicate of the concept, we resample another completion. After successfully sampling a
descriptor, we prepend it to the concept and use the resulting phrase as our search query.

For reference, here are 32 randomly sampled descriptors for “labrador retriever”:

"a good-looking dog", "very gentle", "a", "brown", "lovable", "a strong

runner", "a male or a female", "sturdy", "agile", "a strong", "beautiful",

"a male", "kind", "long-haired", "a male or a female", "a good-looking

dog", "gentle", "medium", "loyal", "very gentle", "blue-eyed", "sturdy",

"blue-eyed", "a retriever", "kind", "loyal", "large", "brown", "good-natured",

"gentle", "large", "small".

2.2.3 Concept Vocabulary Size

As stated in Section 2.1.2, our vocabulary comprises the 146,347 noun lemmas in the
WordNet hierarchy. Thus, in all our experiments, Internet Explorer only searches for
WordNet terms (plus the class names, if we have knowledge of the label set). We found
that this worked quite well for these standard benchmarks. Note that expanding the
vocabulary (e.g., adding technical terms relevant to a specific topic) can easily be done by
adding those terms to the list of possible concepts. One easy extension would be to add
page titles and frequent unigrams and bigrams from Wikipedia, as was done to generate
the CLIP training set [Rad+21]. Doing so would expand our vocabulary to roughly 500,000
total concepts.

2.2.4 Query Model Details

Temperature for concept distribution After estimating scores r(ci) for each concept
ci, we do a temperature-scaled softmax, followed by the tiering operation described in
Section 2.1.6. We compute the temperature τ such that

SMR =
maxi r(ci)−mini r(ci)

τ
(2.14)

where the “softmax range” SMR ∈ R is the desired gap between the largest and smallest
scores after temperature scaling. After the softmax p(ci) ∝ exp(r(ci)/τ), the softmax range

13

Dataset Category

Oxford Flowers102 Flower
Oxford IIIT Pets Pet
Food101 Food
Birdsnap Bird
VOC2007 Object

Table 2.1: Target Dataset “Category”.

determines the likelihood ratio of most likely concept to least likely concept:

maxi p(ci)

mini p(ci)
=

maxi exp(r(ci)/τ)

mini exp(r(ci)/τ)
(2.15)

= exp

(
maxi r(ci)−mini r(ci)

τ

)
(2.16)

= exp(SMR) (2.17)

Thus, SMR is an easy way to specify the relative likelihood of the highest and lowest
scoring concepts and achieve a desired exploration-exploitation balance.

Label set-guided vocabulary To reduce our search space in the label set-guided set-
ting, in which we know the English names of the classes a priori, we generate a subset of the
WordNet vocabulary that contains only the top-10% most semantically-relevant concepts
to each target dataset. We use a pre-trained text embedding model [RG19] to generate 384-
dimensional embeddings for each concept in WordNet, using the same template described
in Section 2.1.5

{lemma} ({hypernym}): {definition}.
To generate a similar embedding for concepts in target datasets, we use the summary

from Wikipedia in place of the definition and the “category” of the target dataset (shown
in Table 2.1) in place of the hypernym:

{label} ({category}): {summary}.
After generating the embeddings for each concept in the target dataset, we find the

k-NN distance for each WordNet concept to the target dataset embeddings, where k is
chosen to be 1/3 the size of the class label set. We then rank the concepts in WordNet by
the distance and take the closest 10% of terms as our subset. This subset is used for all
methods in the label set-guided setting, including the random exploration methods.

2.2.5 Training Details

In each iteration, we download roughly 25k candidate images, since we download up to
100 images for each of the 256 queries. Given this set C of candidate images, we sample
PCR × |C| images from the union of the replay buffer B and the target dataset training

14

Hyperparameter Value

Architecture Resnet-50 [He+16]
Optimizer LARS [YGG17]
Batch size 224
Learning rate 0.8× 224

256

Learning rate schedule constant
MoCo momentum 0.9985
RandomResizedCrop min crop area 0.2
Queries per iteration 256
Requested images per query 100
Min images per query 10
Softmax range (SMR) 3
PCR 2
Epochs per iteration 10

Table 2.2: Internet Explorer hyperparameters.

images D. PCR (past data to candidate data ratio) is a scalar value that determines
how much old data vs new data to train on at every iteration. We set PCR = 2 for all
experiments. We perform 10 epochs of training over the union of the new candidate data
and the sampled replay buffer and target dataset images.

2.2.6 Hyperparameters

Table 2.2 shows our hyperparameter values, which are shared across datasets. We perform
minimal hyperparameter tuning and copy most of the values from the MoCo-v3 [CXH21]
ResNet-50 configuration. We will also release our code upon acceptance, which we hope
will clarify any remaining implementation details and make it easy for the community to
reproduce and build on our work.

2.2.7 Image Licenses

Internet Explorer uses images that were indexed by a web crawler (Google Images and
LAION) or uploaded to Flickr. The images and their rights belong to their respective
owners; we use, download, and train on them under fair use guidelines for research.

15

16

Chapter 3
Experimental Setting and Results

This section provides an overview of the experimental setting used to evaluate Internet
Explorer, as well as detailed results and analysis of our experiments in these settings.

3.1 Experimental Setting

3.1.1 Self-supervised Exploration

To make Internet Explorer as widely applicable as possible, we first evaluate it in a setting
where we assume no prior knowledge of the contents of the images

We assume that we have an unlabeled target dataset of images for which we would like
to learn useful visual features. We compare three methods:

1. Random: sample concepts uniformly from the vocab.

2. Ours: sample concepts from our learned distribution.

3. Ours++: additionally use GPT-generated descriptors.

The lack of label knowledge makes this setting challenging, but also very general. Our
method is forced to explore the space of concepts to discover what is useful for the target
dataset, without any prior knowledge of what might be useful.

3.1.2 Label Set-guided Exploration

In practice, we may sometimes know the set of labels for our task even if we do not have
image-label pairs (i.e., the English names of the classes). For example, we may know that
our data contains images of “Golden Retrievers,” “Maine Coon,” etc., even if we do not have
any images labeled with these names. Knowing the label set greatly accelerates learning
on the Internet, because it acts as a strong prior on what could be useful for our target
dataset and allows us to focus our exploration on the subset of the vocabulary that is most
likely to be useful. Using our text similarity model, we reduce the size of the vocabulary
by selecting the top 10% (14,635 concepts) with the largest average top-k similarity to the
label set in text embedding space. We set k to a third of the size of the label set to reduce

17

0 20 40
Iteration

25

30

k-
N

N
V

al
A

cc
ur

ac
y

(%
) Birdsnap

0 20 40
Iteration

90

95

Flowers

0 20 40
Iteration

70

72

74
Food

0 20
Iteration

70

80

Pets

0 10 20
Iteration

55

60

65

VOC2007

Ours++ Ours Random

Figure 3.1: Learning curves in self-supervised setting. k-NN validation accuracy
improves across iterations on each target dataset. Without using any labels, Internet
Explorer identifies and focuses on relevant concepts for each target dataset. This allows
it to find more useful data than the baseline that searches for random concepts. Adding
GPT-generated descriptors (Ours++) further improves performance by enabling Internet
Explorer to generate diverse views of useful concepts.

0 25 50
Iteration

30

40

k-
N

N
V

al
A

cc
ur

ac
y

(%
) Birdsnap

0 10 20
Iteration

90

95

Flowers

0 10 20
Iteration

72

74

76
Food

0 20 40
Iteration

70

80

Pets

0 10
Iteration

55

60

65

VOC2007

Ours++ Ours Labels Labels + relevant

Figure 3.2: Learning curves in label set-guided setting. Using knowledge of the
label set improves the performance of all methods. Internet Explorer (Ours) outperforms
the baselines on all datasets, and adding GPT-generated descriptors (Ours++) further
improves performance.

the impact of outliers. Restricting our vocabulary to a semantically relevant subset also
strengthens our baselines by ensuring that they only search for potentially useful concepts.

We compare 4 methods in this setting:
1. Labels: only search for labels.
2. Labels + relevant: search for labels half of the time, and random concepts from the

pruned vocabulary the other half of the time.
3. Ours: sample labels half of the time and sample from our learned concept distribution

the other half.
4. Ours++: additionally use GPT-generated descriptors.

We call this setting “label set-guided,” since we have additional supervision in the form of
the label set.

3.1.3 Datasets

We evaluate Internet Explorer on 4 popular small-scale fine-grained classification datasets:
Birdsnap [Ber+14], Flowers-102 [NZ08], Food101 [BGG14], and Oxford-IIT Pets [Par+12].

18

Model Birdsnap Flowers Food Pets VOC2007 Images GPU hrs.

Fixed dataset, lang. supervision
CLIP ResNet-50 (oracle) 57.1 96.0 86.4 88.4 86.7 400× 106 4,000

Fixed dataset, self-supervised
MoCo-v3 (ImageNet pre-train) 26.8 83.2 70.5 79.6 − 1.2× 106 72
MoCo-v3 (ImageNet + target) 39.9 94.6 78.3 85.3 58.0† 1.2× 106 72 + 12

No label set information
Random exploration 39.6 (−0.3) 95.3 (+0.7) 77.0 (−1.3) 85.6 (+0.3) 70.2 (+12.2) 2.2× 106 84 + 40
Ours 43.4 (+3.5) 97.1 (+2.5) 80.5 (+2.2) 86.8 (+1.5) 68.5 (+10.5) 2.2× 106 84 + 40
Ours++ 54.4 (+14.5) 98.4 (+3.8) 82.2 (+3.9) 89.6 (+4.3) 80.1 (+22.1) 2.2× 106 84 + 40

Use label set information
Search labels only 47.1 (+7.2) 96.3 (+1.7) 80.9 (+2.6) 85.7 (+0.4) 61.8 (+3.8) 2.2× 106 84 + 40
Labels + relevant terms 49.9 (+10.0) 98.0 (+3.4) 81.2 (+2.9) 87.0 (+1.7) 67.5 (+9.5) 2.2× 106 84 + 40
Ours 52.0 (+12.1) 97.6 (+3.0) 81.2 (+2.9) 87.3 (+2.0) 70.3 (+14.3) 2.2× 106 84 + 40
Ours++ 62.8 (+22.9) 99.1 (+4.5) 84.6 (+6.3) 90.8 (+5.5) 79.6 (+21.6) 2.2× 106 84 + 40

Table 3.1: Linear probing accuracy. Our method significantly improves the starting
checkpoint performance in just 40 additional hours of training. We show the performance
change from the starting MoCo-v3 (ImageNet + target) initialization in green/red. CLIP
numbers correspond to linear probe (which is higher than its zero-shot accuracy). Internet
Explorer reaches or often surpasses CLIP (oracle with 2x params) performance on each
dataset while using 2.5% as much compute and 0.5% as much data. †For VOC2007, we do
not do ImageNet pre-training because ImageNet is too close to VOC2007.

We also evaluate on Pascal VOC 2007 (Classification) [Eve+10]—a coarse-grained multi-
label classification task consisting of only 2,040 training examples, making it ideal for
testing whether Internet Explorer can efficiently find relevant useful data. We do not
target large-scale datasets like ImageNet [Den+09] because they already contain over a
million human-curated Internet images.

3.1.4 Evaluation Metrics

We compare the representation quality of our models using two metrics: k-nearest neigh-
bors (k-NN) accuracy and linear probe accuracy. To measure k-NN accuracy, we use our
ResNet-50 to encode each dataset’s training and test sets. Then, for each test example, we
find its k nearest neighbors in representation space and use the mode of its neighbors’ la-
bels as the prediction. We use k-NN accuracy to plot learning curves of model performance
after every iteration, since it is easy to quickly compute.

To compute the linear probe accuracy, we first select the best-performing model over
all iterations on the validation set according to the k-NN accuracy. Then, we learn a linear
head on top of these learned representations by minimizing the cross-entropy loss. We tune
the weight decay parameter in the logscale range (10−6, 106), as is done in [Rad+21], using
scikit-learn [Ped+11] with Brent’s method [Bre73].

19

0 5 10 15

0.5

0.6

0.7

A
vg

E
st

im
at

ed
R

ew
ar

d

Cats
Dogs
Other felines
Other canines
Other
First cat
First dog

0 5 10 15
Iteration

0.00

0.25

0.50

0.75

1.00

Pr
ob

ab
ili

ty
pe

rC
at

eg
or

y

Cats
Dogs
Other felines
Other canines
Other

Figure 3.3: Self-supervised concept discovery on Pets dataset. When targeting the
Pets dataset, self-supervised Internet Explorer quickly estimates high reward for concepts
from the cat category (82 concepts) and dog category (246 concepts). It is also able to
identify felines that are not cats (e.g., tigers) and canines that are not dogs (e.g., wolves),
although it gives them lower reward on average. Finding these categories is especially
challenging, since they comprise only 460/146,347 = 0.3% of the vocabulary.

3.2 Results and Analysis

3.2.1 Self-supervised Results

Figure 3.1 shows how Internet Explorer improves the k-NN accuracy more efficiently than
sampling queries uniformly at random from the concept vocabulary. In fact, random
sampling occasionally decreases accuracy, likely due to the fact that Internet images can
generally be unsuitable for pre-training due to issues such as watermarks, images containing
text, and overly photogenic images [MW12; CG15]. Table 3.1 shows that our method
significantly improves on the starting MoCo-v3 (ImageNet + target) checkpoint and can
outperform a CLIP [Rad+21] model of the same size while using much less compute and
data. This is impressive as CLIP can be thought of as an oracle, since its training set
contains up to 20k Bing image search results for each WordNet lemma (in addition to
other queries). Using GPT-generated descriptors in “Ours++” also significantly improves
performance by enabling Internet Explorer to generate diverse views of the most useful
concepts.

20

Target dataset: Pets

Iteration 0 Iteration 1 Iteration 3 Iteration 6 Iteration 10 Iteration 15

Figure 3.4: Progression of downloaded images across training. Top: samples of
Oxford-IIIT Pets images. Bottom: samples of images queried by Internet Explorer across
iterations. As the method learns, it makes queries that are progressively more relevant to
the target dataset.

3.2.2 Self-supervised Exploration Behavior

Figure 3.3 shows the progression of Internet Explorer (Ours++) behavior on the Pets
dataset in the self-supervised setting. Since Pets consists of cat and dog breeds, to analyze
the results, we use the WordNet hierarchy to divide concepts in our vocabulary into 5
meaningful categories: cats, dogs, non-cat felines (e.g., lion), non-dog canines (e.g., wolf),
and other. This categorization is only done for this post hoc analysis and is not provided
during training. Figure 3.3 (top) shows that Internet Explorer rapidly identifies the roughly
0.3% of concepts that are useful for Pets. During the first two iterations, the average
estimated reward for each category is roughly the same. However, after the first dog
concept is searched in iteration #2, the estimated reward and probability mass for dogs
and other canines rapidly increases. The same happens for cats after the first cat is searched
in iteration #4. Interestingly, while “other felines” and “other canines” have higher average
reward than the “other” category, they still have much lower reward than cats and dogs.
This indicates that our model understands that other felines and canines (mostly large,
wild predators) are only moderately relevant for house pet cats and dogs.

Figure 3.4 shows how Internet Explorer downloads progressively more useful images
over time. It shows 8 random images that were downloaded in iteration #0, #1, #3, #6,
#10, and #15. Iteration #0 contains mostly useless data, like graphics or screenshots, but
Pets-relevant images already make up most of the downloads by iteration #3. Results for
other datasets are shown in Section 3.2.7.

3.2.3 Label Set-guided Results

Internet Explorer significantly outperforms the stronger baselines in the label set-guided
setting where we additionally have knowledge of the label set. Searching for the label

21

set continuously provides useful data and helps us rapidly identify other useful concepts.
Together with the diversity promoted by GPT descriptors, Ours++ outperforms CLIP in
3/5 datasets and approaches its performance in the other 2, using just 2.5% of the time and
0.5% the data—as can be seen in Table 3.1. The fact that Ours++ can match/outperform
CLIP is especially impressive, since CLIP has access to up to 20k Bing image search results
for each WordNet lemma (in addition to other queries). k-NN accuracy learning curves for
the label set-guided setting are shown in Figure 3.2.

3.2.4 Learning from other sources of data

Google Images is an exceptionally useful data source for Internet Explorer. It offers access
to a large portion of the Internet’s images, and it ranks images using weak supervision from
the image caption, surrounding text, click rates, image features, incoming and outgoing
hyperlinks, and other signals. This extra supervision is helpful and should be utilized.
Nonetheless, we show that Internet Explorer is agnostic to the choice of text-to-image
search engine and can still rapidly improve even when the data source is much noisier.

Model
Flowers Food Pets

Google Flickr LAION Google Flickr LAION Google Flickr LAION

Fixed dataset
MoCo-v3 (IN) 83.2 83.2 83.2 70.5 70.5 70.5 79.6 79.6 79.6
MoCo-v3 (IN + target) 94.6 94.6 94.6 78.3 78.3 78.3 85.3 85.3 85.3

Undirected search
Random exploration 95.3 95.2 94.8 77.0 80.0 80.2 85.6 84.4 85.1

Internet Explorer
Ours++ (no label set) 98.4 98.1 94.6 81.2 80.3 80.9 87.3 88.4 85.9
Ours++ (with label set) 99.1 99.0 95.8 84.6 81.9 81.0 90.8 89.1 86.7

Table 3.2: Linear probe accuracy with other search engines. Internet Explorer
improves its performance using any search engine, including Flickr and our custom text-
based LAION search engine.

To test Internet Explorer in the most minimal setting, we build a custom search engine
that finds images solely using their accompanying text, without using any pre-trained
visual features whatsoever. We use the LAION-5B dataset [Sch+22], which consists of
5.85 billion noisy image-caption pairs. We filter the dataset to only include samples with
English captions and images with at least 5122 pixels. This leaves us with about 600M text-
image pairs. To find image results for a query, we find the 100 captions closest to the query
in text representation space, then return the associated images. We use a pre-trained text
embedding model [RG19] to compute 384-dimensional text embeddings for each caption.
Then, we use Faiss [JDJ19] to compute a fast, approximate nearest-neighbors lookup index.
Querying our custom search engine finds 100 image results in less than a second. Figure 3.6
shows that our search engine is reasonably accurate, even without using any image features.

We also test Flickr’s photo search API as another text-to-image search engine, in ad-
dition to Google Images and LAION. Figure 3.5 shows that each data source has its own

22

Food101 dataset: “Spaghetti Bolognese”

Google Images: “Spaghetti Bolognese”

Flickr: “Spaghetti Bolognese”

LAION-5B: “Spaghetti Bolognese”

Figure 3.5: Comparison of different search engines. We show images for the
“spaghetti bolognese” class in the Food101 dataset, as well as 20 search results for
“spaghetti bolognese” from Google Images, Flickr, and LAION5B. Google images are typi-
cally well-lit, aesthetic food blog pictures. In comparison, Flickr images are messier, darker,
and capture a wider variety of real-world conditions. LAION-5B images lie somewhere in
the middle, but contain text overlays much more frequently. Duplicate image results are
also common.

23

0 5 10 15 20
Iteration

90.0

92.5

95.0

97.5
k-

N
N

V
al

A
cc

ur
ac

y
(%

)

Flowers

0 5 10 15 20
Iteration

72

73

Food

0 10 20 30
Iteration

78

80

82

Pets

LAION (no label set) LAION (w/ label set) Flickr (no label set) Flickr (w/ label set)

Figure 3.7: Learning from Flickr and LAION-5B. Even with the noisy search results
returned by Flickr and LAION, Internet Explorer still continuously improves performance.

tendencies. For the “spaghetti bolognese” query, Google Images is biased [MW12; CG15]
towards brightly-lit, photogenic images that typically come from food blogs. Flickr mainly
consists of amateur home photos, so it returns a messier variety of images that perhaps
better capture the real world. LAION images come from web crawling, without any rank-
ing, so they additionally contain many graphics with text overlays. The same image can
also frequently show up in the LAION results multiple times, as a result of being posted
on multiple separate pages.

 sunflowerShow me:

Figure 3.6: Custom LAION-5B
search engine. We build a custom
text-to-image search engine that
finds images within the LAION-5B
dataset by doing nearest neighbor
search in text embedding space—
using no image features whatsoever.

Figure 3.7 and Table 3.2 show that Internet Ex-
plorer consistently improves over time, regardless of
the search engine we use. Google consistently does
best, followed by Flickr, then LAION (which has the
smallest pool of images to draw from). Using Inter-
net Explorer to search LAION-5B consistently per-
forms better than random exploration—indicating
that Internet Explorer is effective even for selecting
data from a static dataset. Overall, these results are
proof that Internet Explorer can effectively utilize
any window into the Internet’s vast ocean of image
data.

3.2.5 Are we finding the entire test
set online?

One may be concerned that Internet Explorer improves performance mainly by finding
a significant portion of the test set images online. We address this concern by check-
ing how much test data Internet Explorer has downloaded. We use difference hashing
(dHash) [Buc21] to compute hashes for the target dataset’s training set, its test set, and
the ≈ 106 images that Internet Explorer has downloaded. We compare hashes to determine
how many test images were leaked, and we report the number of collisions in Table 3.3.
Across all five datasets, Internet Explorer finds very few test images. On Birdsnap, Inter-
net Explorer finds 56 additional test set images that were not leaked in the training set,

24

Birdsnap Flowers Food Pets VOC2007

Target test set size 1849 6142 25246 3663 4952

No exploration
Target training set overlap 1 (0.05%) 5 (0.01%) 34 (0.13%) 21 (0.57%) 0 (0.00%)

Internet Explorer
Ours++ (no label set) 28(+1.46%) 11(+0.01%) 35(+0.00%) 26(+0.14%) 1(+0.02%)
Ours++ (with label set) 57(+3.03%) 27(+0.36%) 35(+0.00%) 43(+0.60%) 1(+0.02%)

Table 3.3: Number of leaked test set images. We use image hashing to compute
the fraction of test images present in the set of images downloaded by Internet Explorer.
Surprisingly, the training/validation sets of these datasets already leak a small fraction
of the test sets—Pets is the most egregious, with 0.57% of test images leaked. For each
dataset, we show the test set size, the number of leaked test images, and the percentage of
the test set that this represents in blue; for each version of our method, we show the total
number of leaked images that the model had access to, and the percentage increase this
represents over the dataset’s leakage in blue. Leakage numbers for our methods include
this train-test leakage, since our methods also train on the target dataset’s training set.
Internet Explorer only finds a tiny fraction of test set images online, and it only uses them
for self-supervised training, so there is no label leakage. Overall, Internet Explorer’s increase
in accuracy cannot be explained by test set leakage, so it must be improving performance
through better feature learning and generalization.

which is roughly 3% of the test set. On the other datasets, the amount leaked ranges from
0.003% to 0.6% of the test set. Additionally, we only perform self-supervised training on
downloaded images, so it is much harder for our model to cheat with the leaked images.
Overall, given that Internet Explorer outperforms its starting checkpoint by between 5 to
30 percentage points, we conclude that its performance cannot be explained by cheating.

In fact, we view it as a positive that Internet Explorer finds some test set images,
because it serves as confirmation that it is learning to search for relevant images—and the
most relevant images possible would be those from the dataset itself! But beyond test set
images, Internet Explorer finds a lot of internet images that are very relevant to the dataset.
We visualize the top-10 most similar images for 5 randomly selected test set images from
the Flowers, Food, and Pets datasets in Figure 3.8. We use CLIP ViT-L/14 to compute
the representations of the test set images, as well as the downloaded images. We then find
the top-10 most similar online images given a test set image (from the downloaded images
using Ours++ (with label set)). We see that Internet Explorer finds several images that
are very similar but not identical to the test set images.

3.2.6 Effect of image reward type

We run an ablation on the type of image relevance reward. Instead of calculating the image
reward based on the average similarity to the k = 15 nearest neighbors in representation
space (as in Section 2.1.3), we also try using k = 1 or the MoCo contrastive loss as the

25

Figure 3.8: Top-10 most similar online images. The left column shows randomly
chosen test set images from each dataset, and the right block shows the 10 most similar
images in the downloaded data for each test image, ranked left to right.

26

reward. Table 3.4 compares these three metrics in the label set-guided setting and shows
that k = 15 does best. We explain this result by qualitatively comparing the behavior of
various metrics on Food101 in Figure 3.9 in the appendix. The MoCo loss does not identify
relevant concepts, instead preferring images that are difficult to align across augmentations.
Representation similarity with k = 1 also fails, as it prefers images of zebras and text
because these images are highly similar to a few outlier images in Food101. Our proposed
reward with k = 15 eliminates the influence of outliers and avoids this problem.

Reward Type Food

MoCo loss 81.2
1-NN sim 83.2
15-NN sim (ours) 84.6

Table 3.4: Ablation on type of image reward. MoCo loss does not identify relevant
concepts, and k = 1 similarity is too noisy to identify useful concepts.

15-NN
similarity:

MoCo loss:

1-NN
similarity:

1-NN in
Pets dataset:

breakfast
burrito

edamame chocolate
mousse

hamburgerLabel:

Figure 3.9: Top images preferred by different rewards. We show the top 5 down-
loaded images ranked by 3 possible image rewards on the Food dataset. 15-NN (ours)
prefers a variety of food images, whereas MoCo prefers noisy images out of the training
distribution. 1-NN is thrown off by outliers in the Food dataset and thus prefers black
images, text, and zebras.

3.2.7 Self-supervised Exploration Behavior on Other Datasets

Just as Figure 3.4 in Section 3.2.2 showed how Internet Explorer progressively discovers
useful data when targeting the Pets dataset, Figure 3.10, Figure 3.11, Figure 3.12, and
Figure 3.13 show the progression of downloaded images when targeting Birdsnap, Flowers,
Food, and VOC 2007 respectively. Note that this analysis is in the self-supervised setting,
without any knowledge of the label set.

27

Target dataset: Birdsnap

Iteration 0 Iteration 1 Iteration 3 Iteration 6 Iteration 10 Iteration 15

Figure 3.10: Progression of downloaded Birdsnap images. This corresponds to
Ours++ without using label set information.

Target dataset: Flowers

Iteration 0 Iteration 1 Iteration 3 Iteration 6 Iteration 10 Iteration 15

Figure 3.11: Progression of downloaded Flowers images. This corresponds to
Ours++ without using label set information.

28

Target dataset: Food

Iteration 0 Iteration 1 Iteration 3 Iteration 6 Iteration 10 Iteration 15

Figure 3.12: Progression of downloaded Food images. This corresponds to Ours++
without using label set information.

Target dataset: VOC2007

Iteration 0 Iteration 1 Iteration 3 Iteration 6 Iteration 10 Iteration 15

Figure 3.13: Progression of downloaded VOC2007 images. This corresponds to
Ours++ without using label set information.

29

30

Chapter 4
Conclusions and Future Directions

We propose a novel paradigm for training machine learning models that leverages the
Internet as a dynamic and interactive source of highly relevant training data. Instead
of relying on fine-tuning general-purpose models pre-trained on large, static datasets, we
propose a method that focuses on training a small-scale model that excels on specific tasks
at hand. Our system, Internet Explorer, explores the Web in a self-supervised manner,
learning to collect images via text-to-image search engines that are relevant to and improve
performance on the task at hand.

Our findings indicate that interactively exploring the Internet is effective for training
small-scale, task-specific models when equipped with the right search strategies. By cycling
between searching for images on the Internet with text queries, self-supervised training on
downloaded images, determining which images were useful, and prioritizing what to search
for next, Internet Explorer is able to achieve remarkable results; in just 30–40 hours of
training on a single GPU desktop, it outperforms or matches the performance of CLIP
oracle models and strong baselines that search the Internet in an undirected manner.

As we continue to explore the exciting possibilities of online representation learning on
the open Web, several promising avenues for future work have emerged. Our work with
Internet Explorer serves as the foundation for investigating more sophisticated metrics to
better quantify the usefulness of a particular image, as well as alternative self-supervised
learning algorithms that may offer a better fit for degenerate Internet images. The in-
corporation of Internet videos as a richer source of data, scaling to larger and more di-
verse datasets like ImageNet, and applying our approach to more challenging visual tasks,
videos, and robotics, are just a few of the directions that can be explored. Furthermore,
the possibility of fine-tuning vision-language models such as CLIP online using captions
and search terms could lead to even more effective and adaptive models, further unlocking
the potential of actively leveraging Internet for learning representations.

31

32

Bibliography
This bibliography contains 49 references.

[BDW21] Hangbo Bao, Li Dong, and Furu Wei. “Beit: Bert pre-training of image trans-
formers”. In: arXiv preprint arXiv:2106.08254 (2021).

[Ber+14] Thomas Berg, Jiongxin Liu, Seung Woo Lee, Michelle L Alexander, David
W Jacobs, and Peter N Belhumeur. “Birdsnap: Large-scale fine-grained visual
categorization of birds”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2014, pp. 2011–2018.

[BGG14] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. “Food-101–mining
discriminative components with random forests”. In: European conference on
computer vision. Springer. 2014, pp. 446–461.

[BPL21] Adrien Bardes, Jean Ponce, and Yann LeCun. “Vicreg: Variance-invariance-
covariance regularization for self-supervised learning”. In: arXiv preprint arXiv:2105.04906
(2021).

[Bre73] Richard P. Brent. Algorithms for Minimization without Derivatives. 1st. En-
glewood Cliffs, New Jersey: Prentice-Hall, 1973.

[Buc21] Johannes Buchner. imagehash (fork). https://github.com/JohannesBuchner/
imagehash. 2021.

[Car+10] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hr-
uschka, and Tom M Mitchell. “Toward an architecture for never-ending lan-
guage learning”. In: Twenty-Fourth AAAI conference on artificial intelligence.
2010.

[Car+21] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr
Bojanowski, and Armand Joulin. “Emerging properties in self-supervised vision
transformers”. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2021, pp. 9650–9660.

[CG15] Xinlei Chen and Abhinav Gupta. “Webly supervised learning of convolutional
networks”. In: Proceedings of the IEEE international conference on computer
vision. 2015, pp. 1431–1439.

[Che+20] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. “A
simple framework for contrastive learning of visual representations”. In: preprint
arXiv:2002.05709 (2020).

[Cli20] Joe Clinton.Google Images Download (fork). https://github.com/Joeclinton1/
google-images-download. 2020.

33

https://github.com/JohannesBuchner/imagehash
https://github.com/JohannesBuchner/imagehash
https://github.com/Joeclinton1/google-images-download
https://github.com/Joeclinton1/google-images-download

[CSG13] Xinlei Chen, Abhinav Shrivastava, and Abhinav Gupta. “Neil: Extracting vi-
sual knowledge from web data”. In: Proceedings of the IEEE international con-
ference on computer vision. 2013, pp. 1409–1416.

[CXH21] Xinlei Chen, Saining Xie, and Kaiming He. “An empirical study of training
self-supervised vision transformers”. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision. 2021, pp. 9640–9649.

[Den+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Im-
agenet: A large-scale hierarchical image database”. In: 2009 IEEE conference
on computer vision and pattern recognition. Ieee. 2009, pp. 248–255.

[Eve+10] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. “The pascal visual object classes (voc) challenge”. In: IJCV
(2010).

[FZ20] Vitaly Feldman and Chiyuan Zhang. “What neural networks memorize and
why: Discovering the long tail via influence estimation”. In: Advances in Neural
Information Processing Systems 33 (2020), pp. 2881–2891.

[Ge18] Weifeng Ge. “Deep metric learning with hierarchical triplet loss”. In: Proceed-
ings of the European Conference on Computer Vision (ECCV). 2018, pp. 269–
285.

[Gri+20] Jean-Bastien Grill et al. “Bootstrap your own latent: A new approach to self-
supervised learning”. In: NeurIPS. 2020.

[Har+17] Ben Harwood, Vijay Kumar BG, Gustavo Carneiro, Ian Reid, and Tom Drum-
mond. “Smart mining for deep metric learning”. In: Proceedings of the IEEE
International Conference on Computer Vision. 2017, pp. 2821–2829.

[He+16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual
learning for image recognition”. In: CVPR. 2016.

[He+20] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. “Mo-
mentum contrast for unsupervised visual representation learning”. In: CVPR.
2020.

[He+22] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross
Girshick. “Masked autoencoders are scalable vision learners”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2022, pp. 16000–16009.

[Ily+22] Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Alek-
sander Madry. “Datamodels: Predicting predictions from training data”. In:
arXiv preprint arXiv:2202.00622 (2022).

[JDJ19] Jeff Johnson, Matthijs Douze, and Hervé Jégou. “Billion-scale similarity search
with GPUs”. In: IEEE Transactions on Big Data 7.3 (2019), pp. 535–547.

[Jia+21] Ziyu Jiang, Tianlong Chen, Ting Chen, and Zhangyang Wang. “Improving con-
trastive learning on imbalanced data via open-world sampling”. In: Advances
in Neural Information Processing Systems 34 (2021), pp. 5997–6009.

[KL17] Pang Wei Koh and Percy Liang. “Understanding black-box predictions via
influence functions”. In: International conference on machine learning. PMLR.
2017, pp. 1885–1894.

34

[LEP22] Alexander C Li, Alexei A Efros, and Deepak Pathak. “Understanding Collapse
in Non-Contrastive Siamese Representation Learning”. In: European Confer-
ence on Computer Vision. Springer. 2022, pp. 490–505.

[Mil95] George A Miller. “WordNet: a lexical database for English”. In: Communica-
tions of the ACM 38.11 (1995), pp. 39–41.

[MW12] Elad Mezuman and Yair Weiss. “Learning about canonical views from internet
image collections”. In: Advances in neural information processing systems 25
(2012).

[NZ08] Maria-Elena Nilsback and Andrew Zisserman. “Automated flower classification
over a large number of classes”. In: 2008 Sixth Indian Conference on Computer
Vision, Graphics & Image Processing. 2008.

[Oh +16] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. “Deep metric
learning via lifted structured feature embedding”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016, pp. 4004–4012.

[OLV18] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. “Representation learning
with contrastive predictive coding”. In: preprint arXiv:1807.03748 (2018).

[Par+12] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. “Cats
and dogs”. In: 2012 IEEE conference on computer vision and pattern recogni-
tion. IEEE. 2012, pp. 3498–3505.

[Ped+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. “Scikit-learn: Machine learning in Python”. In: The Jour-
nal of Machine Learning Research 12 (2011), pp. 2825–2830.

[PGD21] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. “Deep learning
on a data diet: Finding important examples early in training”. In: Advances in
Neural Information Processing Systems 34 (2021), pp. 20596–20607.

[Rad+21] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. “Learning transferable visual models from natural language supervision”.
In: International Conference on Machine Learning. PMLR. 2021, pp. 8748–
8763.

[RG19] Nils Reimers and Iryna Gurevych. “Sentence-bert: Sentence embeddings using
siamese bert-networks”. In: arXiv preprint arXiv:1908.10084 (2019).

[Rob+20] Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. “Con-
trastive learning with hard negative samples”. In: arXiv preprint arXiv:2010.04592
(2020).

[Sch+21] Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmar-
czyk, Clayton Mullis, Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran
Komatsuzaki. “Laion-400m: Open dataset of clip-filtered 400 million image-
text pairs”. In: arXiv preprint arXiv:2111.02114 (2021).

[Sch+22] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross
Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell

35

Wortsman, et al. “LAION-5B: An open large-scale dataset for training next
generation image-text models”. In: arXiv preprint arXiv:2210.08402 (2022).

[Set09] Burr Settles. “Active learning literature survey”. In: (2009).

[SKP15] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “Facenet: A unified
embedding for face recognition and clustering”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2015, pp. 815–823.

[Sut91] Richard S Sutton. “Dyna, an integrated architecture for learning, planning,
and reacting”. In: ACM Sigart Bulletin 2.4 (1991), pp. 160–163.

[Vas15] Hardik Vasa. Google Images Download. https://github.com/hardikvasa/
google-images-download. 2015.

[WK21] Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Au-
toregressive Language Model. https : / / github . com / kingoflolz / mesh -

transformer-jax. May 2021.

[WR95] Christopher Williams and Carl Rasmussen. “Gaussian processes for regres-
sion”. In: Advances in neural information processing systems 8 (1995).

[Wu+17] Chao-Yuan Wu, R Manmatha, Alexander J Smola, and Philipp Krahenbuhl.
“Sampling matters in deep embedding learning”. In: Proceedings of the IEEE
international conference on computer vision. 2017, pp. 2840–2848.

[YGG17] Yang You, Igor Gitman, and Boris Ginsburg. “Large Batch Training of Con-
volutional Networks”. In: preprint arXiv:1708.03888 (2017).

[Zbo+21] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. “Bar-
low Twins: Self-Supervised Learning via Redundancy Reduction”. In: arXiv
preprint arXiv:2103.03230 (2021).

36

https://github.com/hardikvasa/google-images-download
https://github.com/hardikvasa/google-images-download
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

	1 Introduction
	2 Method
	2.1 Internet Explorer: An Online Agent
	2.1.1 Text-to-image Search
	2.1.2 Text Query Generation
	2.1.3 Self-supervised Training
	2.1.4 Image Relevance Reward
	2.1.5 Estimating Reward for Unseen Concepts
	2.1.6 Query sampling distribution
	2.1.7 Provable speedup in relevant query identification

	2.2 Method Details
	2.2.1 WordNet Lemmas
	2.2.2 GPT-J Descriptor Prompting
	2.2.3 Concept Vocabulary Size
	2.2.4 Query Model Details
	2.2.5 Training Details
	2.2.6 Hyperparameters
	2.2.7 Image Licenses

	3 Experimental Setting and Results
	3.1 Experimental Setting
	3.1.1 Self-supervised Exploration
	3.1.2 Label Set-guided Exploration
	3.1.3 Datasets
	3.1.4 Evaluation Metrics

	3.2 Results and Analysis
	3.2.1 Self-supervised Results
	3.2.2 Self-supervised Exploration Behavior
	3.2.3 Label Set-guided Results
	3.2.4 Learning from other sources of data
	3.2.5 Are we finding the entire test set online?
	3.2.6 Effect of image reward type
	3.2.7 Self-supervised Exploration Behavior on Other Datasets

	4 Conclusions and Future Directions
	Bibliography

