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Task: classity bird species

Question: what do you do to get max performance?
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Static Datasets Internet: Billions of images uploaded each day

Static datasets are miniscule and out-of-date in comparison to the Internet!
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Challenges

What to search for?

How to search for it?

What data is good?

How to integrate the data into our model?
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Action
Observation
Reward
Agent Environment
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Environment — Internet
Action — search engine queries
Observation — Internet results

Reward — relevant training data

Internet Explorer
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Internet Explorer outperforms fixed datasets

Model Birdsnap Flowers Food Pets VOC2007 Images GPU-hours

Fixed dataset, self-supervised
MoCo-v3 (ImageNet + target) 39.9 94.6 78.3 85.3 58.0f 1.2M 84
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Birdsnap Flowers Food Pets VOC2007 Images GPU-hours
Fixed dataset, self-supervised
MoCo-v3 (ImageNet + target) 39.9 94.6 78.3 85.3 58.0f 1.2M 84
Exploring the Internet +40 hrs
Random exploration 39.6 (—0.3) 953 (4+0.7) 77.0(—-1.3) 85.6(+0.3) 70.2 (+12.2) 2.2M 124
Search labels only 471 (+7.2) 963 (+1.7) 80.9(+2.6) 85.7(+0.4) 6L8 (+3.8)  2.2M 124 on1GPU
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Internet Explorer outperforms fixed datasets

Model

Birdsnap Flowers Food Pets VOC2007 Images GPU-hours
Fixed dataset, self-supervised
MoCo-v3 (ImageNet + target) 39.9 94.6 78.3 85.3 58.0f 1.2M 84
Exploring the Internet +40 hrs
Random exploration 39.6 (—0.3) 953 (4+0.7) 77.0(—-1.3) 85.6(+0.3) 70.2 (+12.2) 2.2M 124
Search labels only 471 (+7.2) 963 (+1.7) 80.9(+2.6) 85.7(+0.4) 618 (+38) 2.2M 124 on1GPU
Ours++ (no label set) 54.4 (+14.5) 984 (+3.8) 82.2(+3.9) 89.6(+4.3) 80.1(+22.1) 2.2M 124
Ours++ (with label set) 62.8(+22.9) 99.1(+4.5) 84.6(+6.3) 90.8(+5.5) 79.6 (+21.6) 2.2M 124 32x time
7
Fixed dataset, language supervision > 180x data
CLIP (oracle & 2x params) 57.1 96.0 86.4 88.4 86.7 400M 4000

Table 1. Improved representation quality (linear probe accuracy) with Internet Explorer.
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Are we just finding the test images online?

Birdsnap Flowers Food Pets

VOC2007 Images Downloaded

Target test set size 1849 6142 25246 3663

4952 —

No exploration
Target training set overlap 1 (0.05%) 5 (0.01%) 34 (0.13%) 21 (0.57%)

0 (0.00%) -

Internet Explorer
Ours++ (no label set) 28 (+1.46%) 11(40.01%) 35(+0.00%) 26(+0.14%)
Ours++ (with label set) 57(4+3.03%) 27(+0.36%) 35(4+0.00%) 43(+0.60%)

1(+0.02%) ~ 10°
1(40.02%) ~ 106




But we are finding very relevant images...















Internet Explorer is robust to choice of search engine



Internet Explorer is robust to choice of search engine

Google



Internet Explorer is robust to choice of search engine

Google



Internet Explorer is robust to choice of search engine
Google

Q: do we rely on fancy tricks in modern search engines?



Internet Explorer is robust to choice of search engine

Google .

Q: do we rely on fancy tricks in modern search engines?

What if we could create our own search engine using just text?
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What's next on the open web?
e Scale to larger / more diverse datasets like ImageNet
e Apply to more challenging vision tasks, videos, and robotics

e Finetune a CLIP model online using captions + search terms!
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Questions?



Your Diffusion Model is Secretly a Zero-Shot Classifier

Alexander C.Li Mihir Prabhudesai Shivam Duggal Ellis Brown Deepak Pathak

Carnegie Mellon University
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Bayes’ Rule + Generative Model — Classification!

c; | x) = p(ci) po(x | ci)
po(c; | x) ij(cj) po(x | ¢;)

1
| o p(ci) =
We use a uniform label distribution and a N

simple approximate ELBO to get: ELBO ~ —E; [||e — es(xs, ¢;) H2]
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Diffusion Classifier - OOD Generalization

Using Stable Diffusion as an image-text model



Diffusion Classifier - OOD Generalization

Using Stable Diffusion as an image-text model
Using Diffusion Transformers (DiT) as
a class-conditioned diffusion model

Peebles & Xie. Scalable Diffusion Models with Transformers (DiT)
Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models (Stable Diffusion)



Diffusion Classifier — Compositional Reasoning

Diffusion Classifier =~ OpenCLIP  CLIP Diffusion Classifier =~ OpenCLIP  CLIP

"a bird eats a snake" "a snake eats a bird" "there are more "there are more flowers
ladybugs than flowers" than ladybugs"

Diffusion Classifier =~ OpenCLIP  CLIP Diftfusion Classifier =~ OpenCLIP  CLIP
"the taller person hugs  "the shorter person hugs "an old person kisses a  "a young person kisses
the shorter person" the taller person" young person" an old person"

Thrush et al. Winoground: Probing Vision and Language Models for Visio-Linguistic Compositionality



https:/ /diffusion-classifier.github.io/
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