Online Representation Learning on the Open Web

Ellis Brown Advisor: Deepak Pathak Computer Science Department, School of Computer Science Carnegie Mellon University

Committee

Deepak Pathak Deva Ramanan Alexei A. Efros

Consider this scenario:

Consider this scenario:

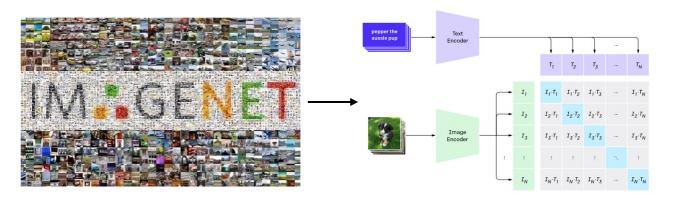
Task: classify bird species

Consider this scenario:

Task: classify bird species

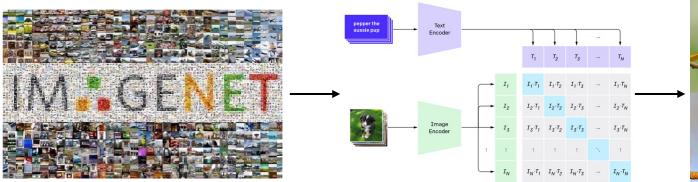
Question: what do you do to get max performance?

1. Some large dataset



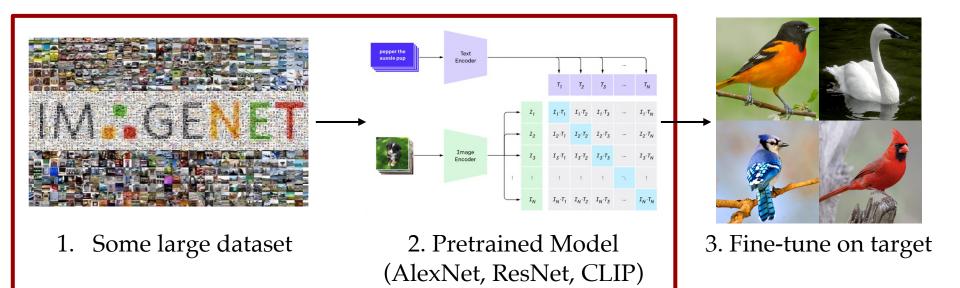
1. Some large dataset

2. Pretrained Model (AlexNet, ResNet, CLIP)



1. Some large dataset

2. Pretrained Model (AlexNet, ResNet, CLIP) 3. Fine-tune on target



Let's talk about this

1.2M

S OpenAI CLIP

1.2M

400M

S OpenAI CLIP

LAION-5B 🗳

Large-scale Artificial Intelligence Open Network

1.2M

400M

OpenAI CLIP

• Snapshot of the internet

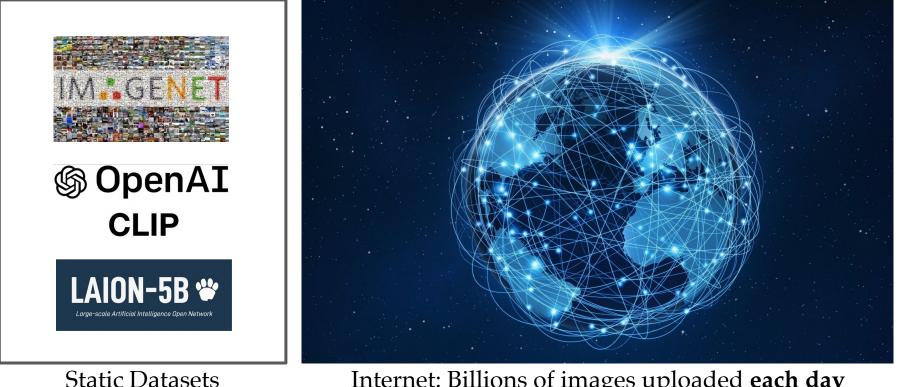
- Snapshot of the internet
- Instantly stale

- Snapshot of the internet
- Instantly stale
- Curator's bias

- Snapshot of the internet
- Instantly stale
- Curator's bias
- Worse for long-tail tasks

- Snapshot of the internet
- Instantly stale
- Curator's bias
- Worse for long-tail tasks

Internet: Billions of images uploaded each day



Internet: Billions of images uploaded each day

Static datasets are miniscule and out-of-date in comparison to the Internet!

Internet Explorer

Targeted Representation Learning on the Open Web

Alexander C. Li*, Ellis Brown*, Alexei A. Efros, Deepak Pathak

Accepted at ICML 2023

Internet Explorer

Targeted Representation Learning on the Open Web

Alexander C. Li*, Ellis Brown*, Alexei A. Efros, Deepak Pathak

Treat *Internet* itself as a dataset

Treat Internet itself as a dataset

open-ended

Treat Internet itself as a dataset

open-ended

constantly growing

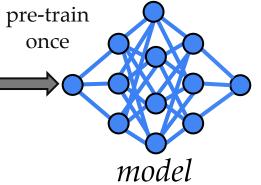
Treat Internet itself as a dataset

open-ended

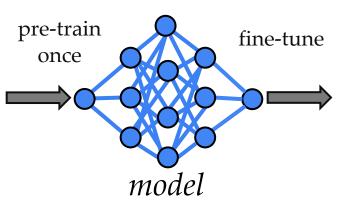
constantly growing

always up-to-date

static dataset



static dataset



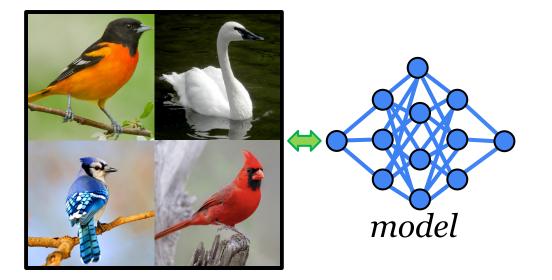
target dataset

static dataset

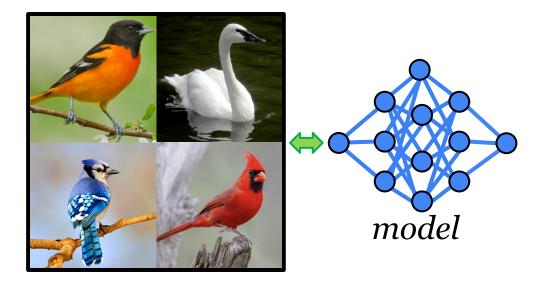
Our setting

target dataset

Our setting

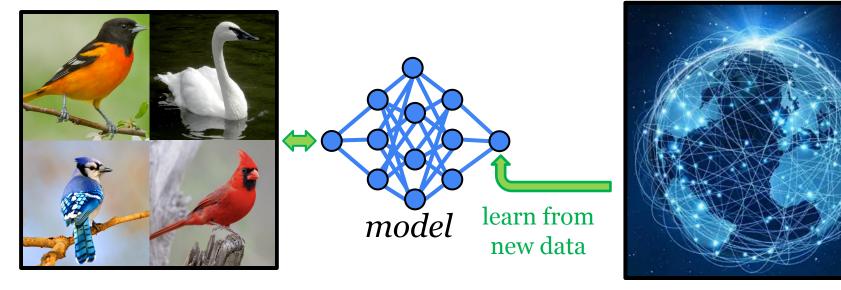


target dataset



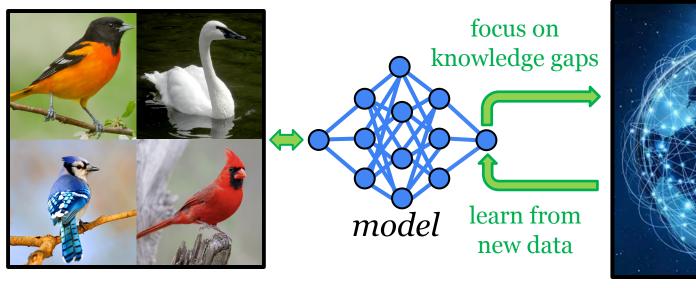
Internet

target dataset



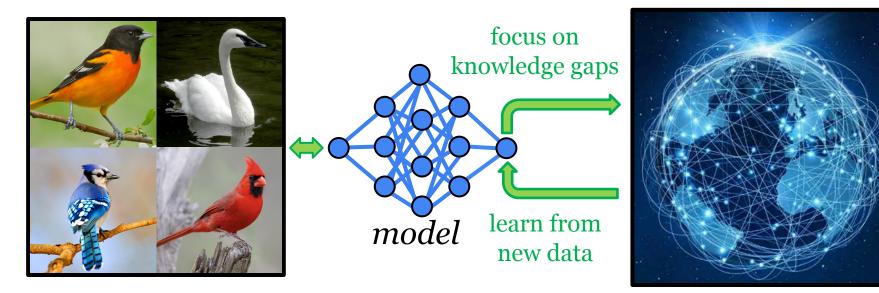
target dataset

Internet



target dataset

Internet



target dataset

"Internet Explorer"

Internet

Learn features for any task

Learn features for any task

Cover long-tail corner cases

Learn features for any task

Cover long-tail corner cases

Schuck Schuck Image: Schuck Sch

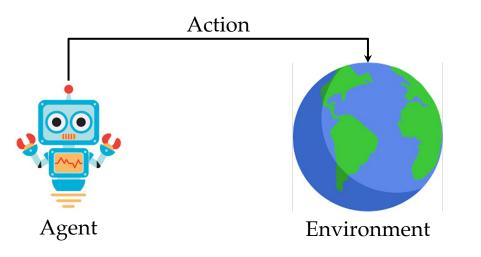
Find up-to-date data

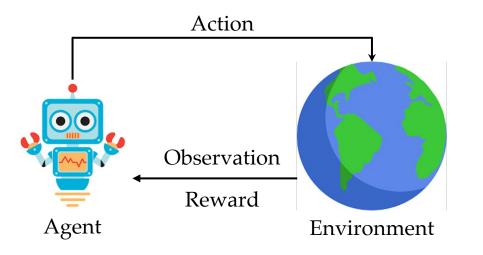
• What to search for?

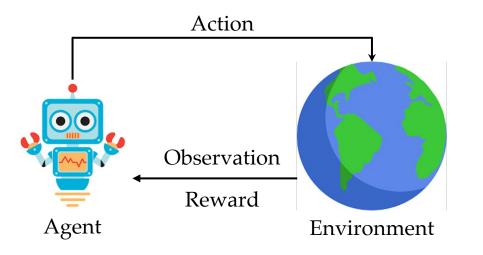
- What to search for?
- How to search for it?

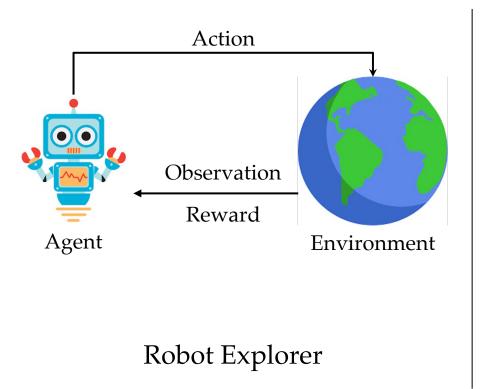
- What to search for?
- How to search for it?
- What data is good?

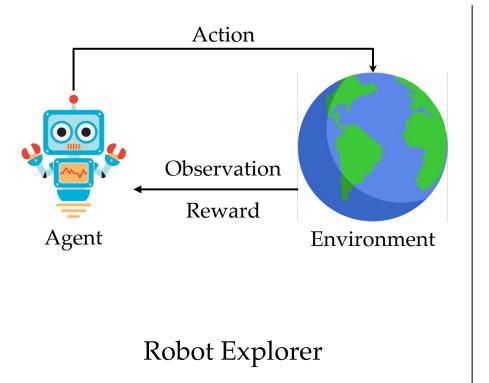
- What to search for?
- How to search for it?
- What data is good?
- How to integrate the data into our model?



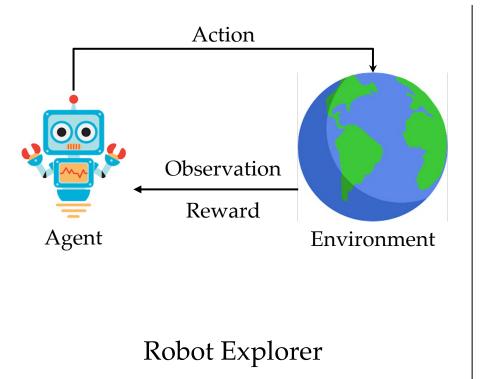






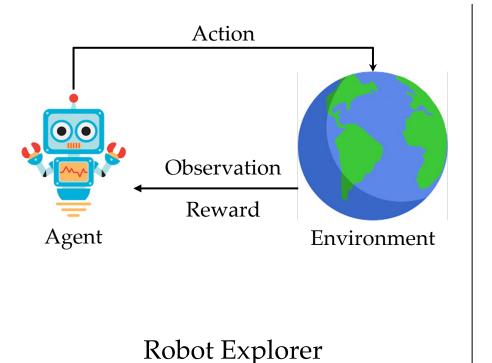


Environment \rightarrow Internet



Environment \rightarrow Internet

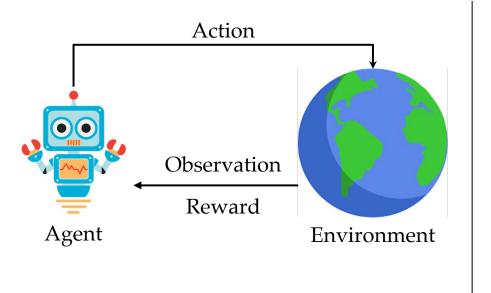
Action \rightarrow search engine queries



Environment \rightarrow Internet

Action \rightarrow search engine queries

Observation \rightarrow Internet results



Robot Explorer

Environment \rightarrow Internet

Action \rightarrow search engine queries

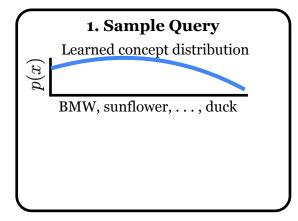
Observation \rightarrow Internet results

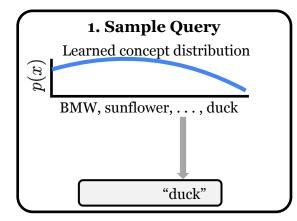
Reward \rightarrow relevant training data

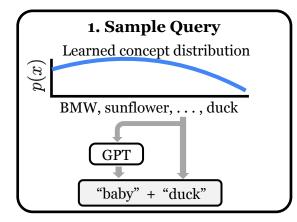
1. Sample Query

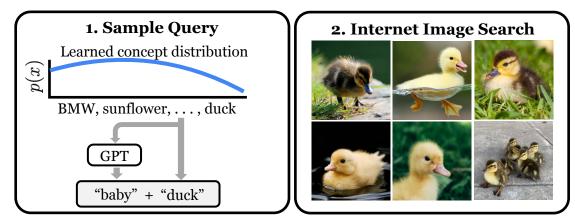
1. Sample Query

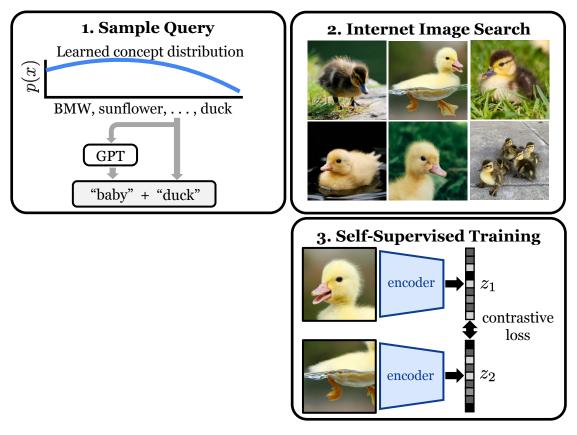
BMW, sunflower, . . . , duck

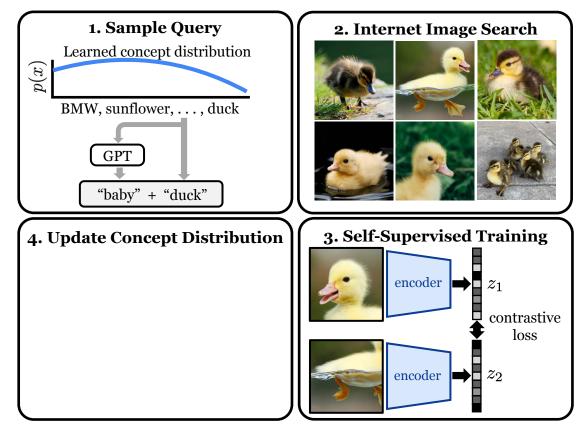


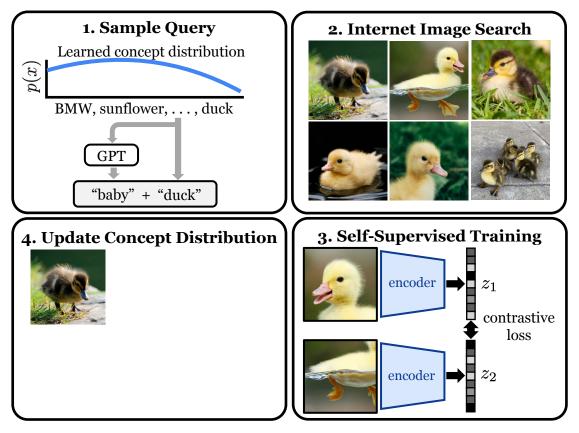


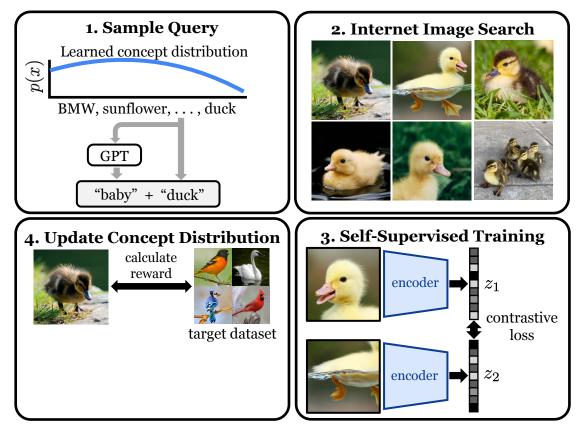




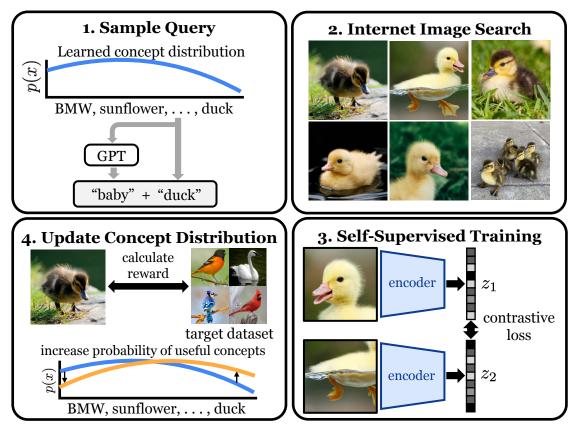


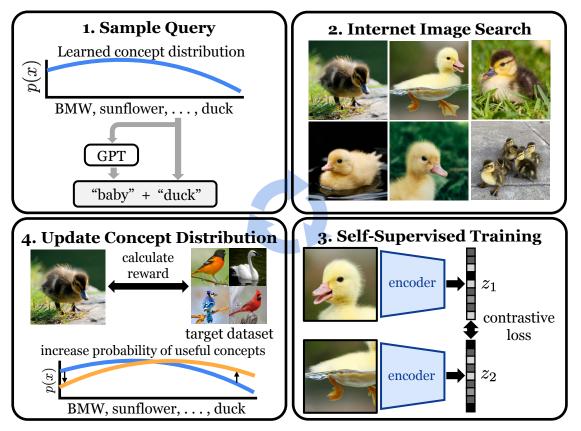


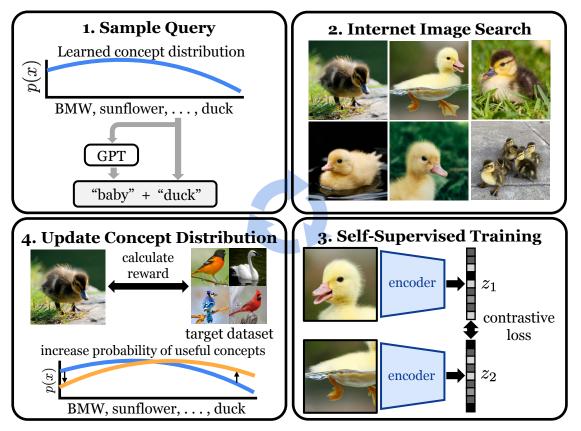


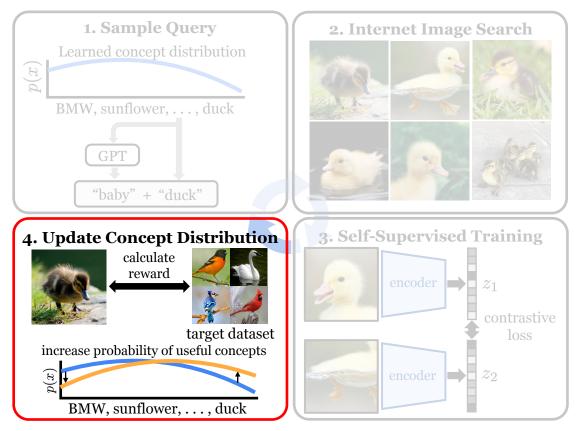


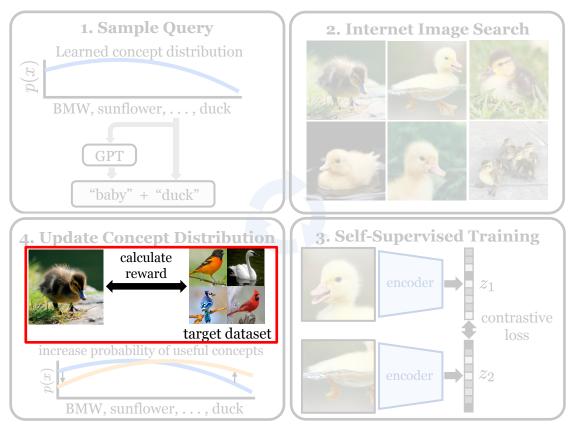


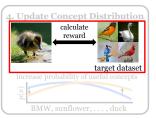


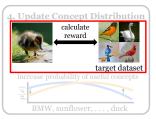




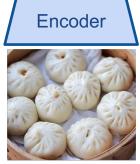




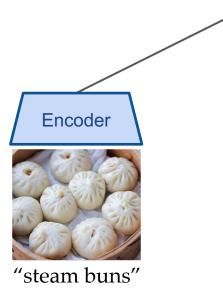




"steam buns" downloaded image #1



"steam buns" downloaded image #1



downloaded image #1

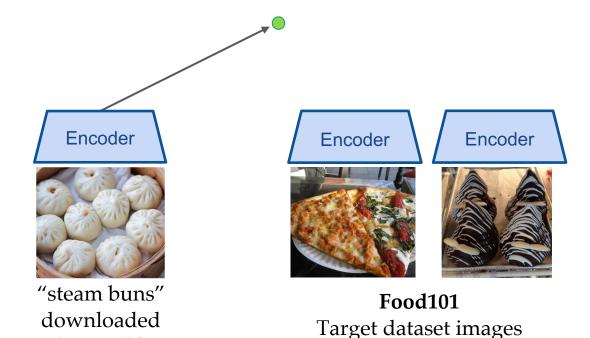
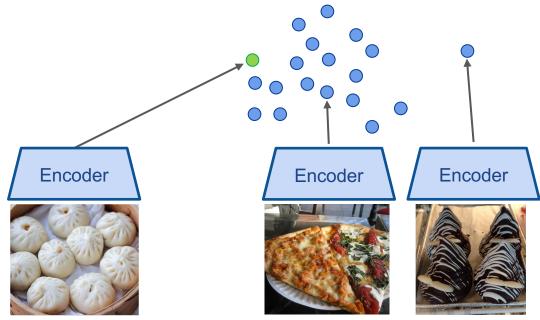


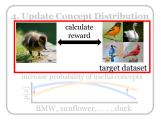
image #1

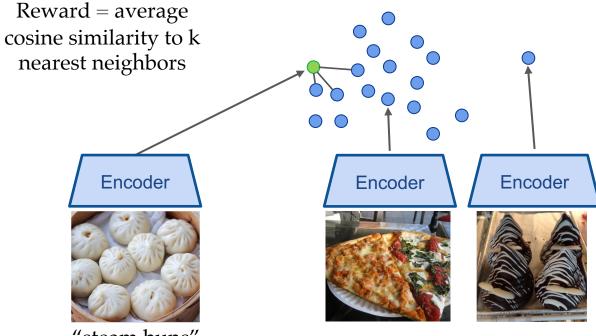


"steam buns" downloaded image #1

Food101 Target dataset images







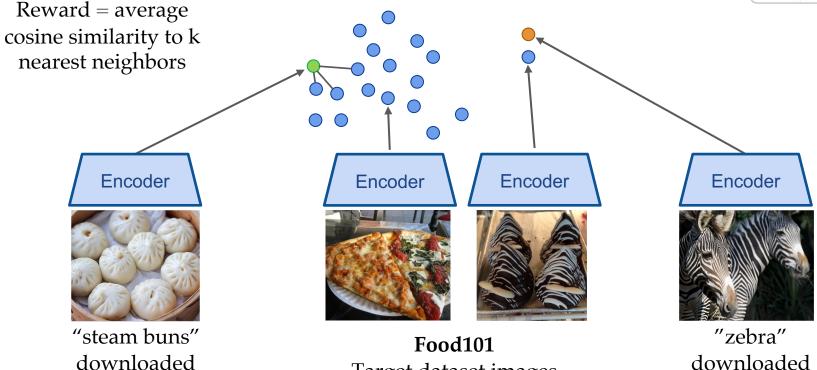
"steam buns" downloaded image #1

Food101 Target dataset images

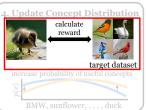
image #2

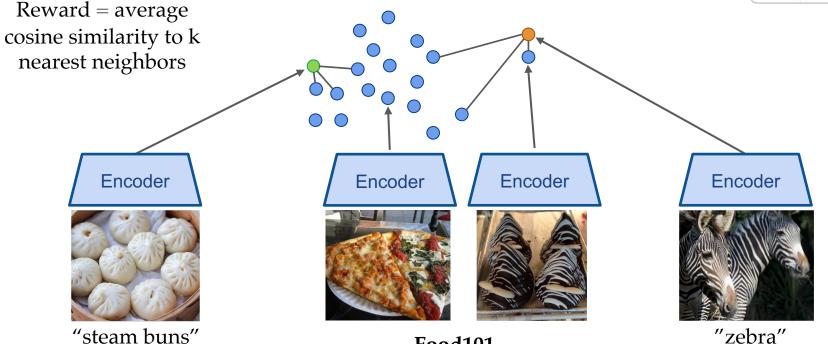
Image Reward (prioritize relevant *images*)

image #1



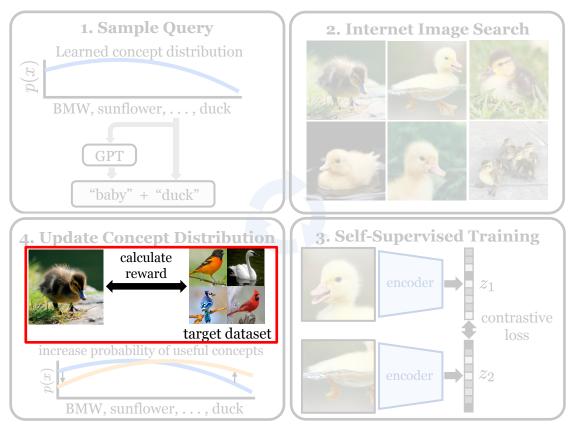
Target dataset images

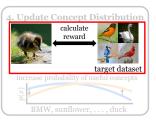




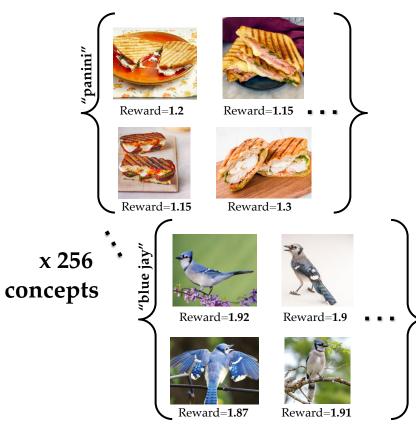
"steam buns" downloaded image #1

Food101 Target dataset images "zebra" downloaded image #2

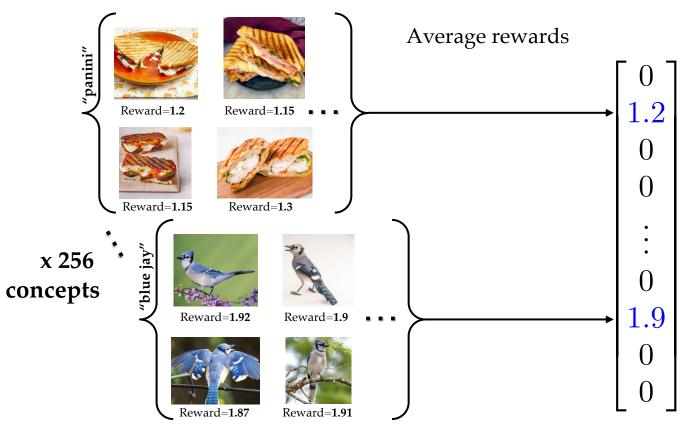


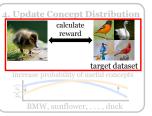


Concept Reward (prioritize relevant *concepts*)

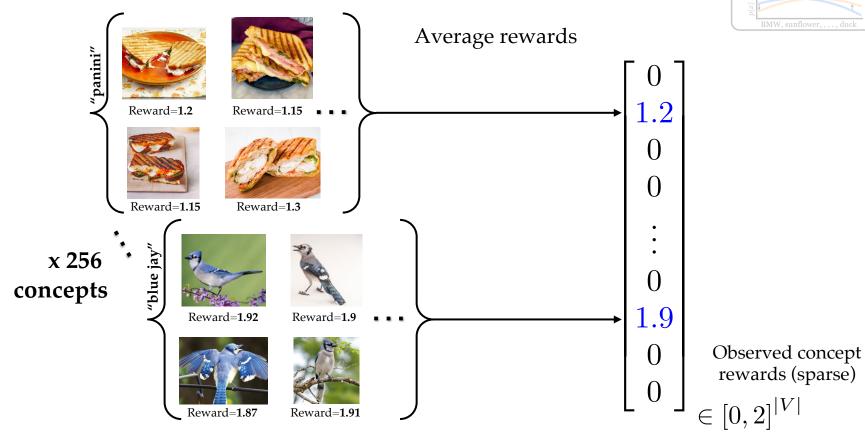


Concept Reward (prioritize relevant *concepts*)



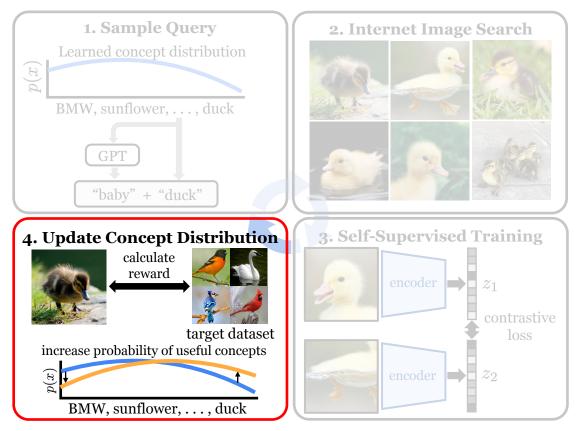


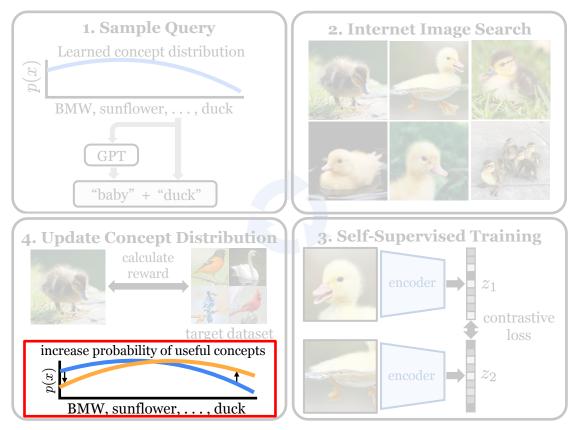
Concept Reward (prioritize relevant *concepts*)

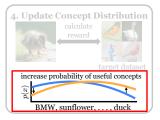


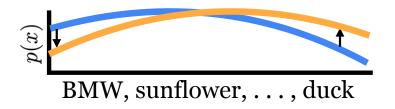
calculate reward

increase probability of use

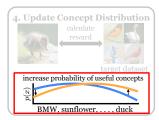


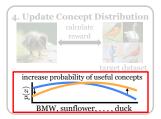






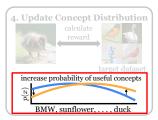
• Vocabulary size: |V|≈ 150k concepts



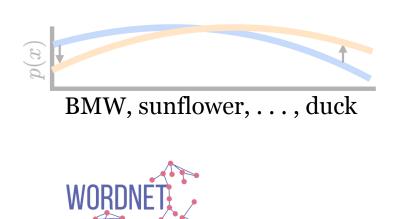


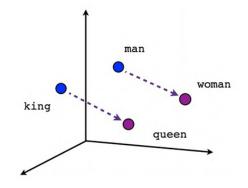
- Vocabulary size: |V|≈ 150k concepts
- Want to estimate value of unseen concepts from just a few thousand results

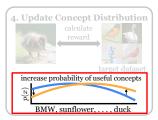
8 BMW, sunflower, ..., duck



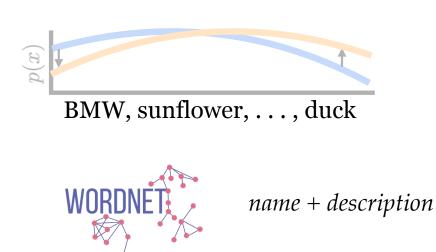
- Vocabulary size: |V|≈ 150k concepts
- Want to estimate value of unseen concepts from just a few thousand results

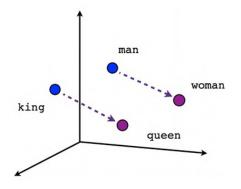


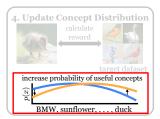




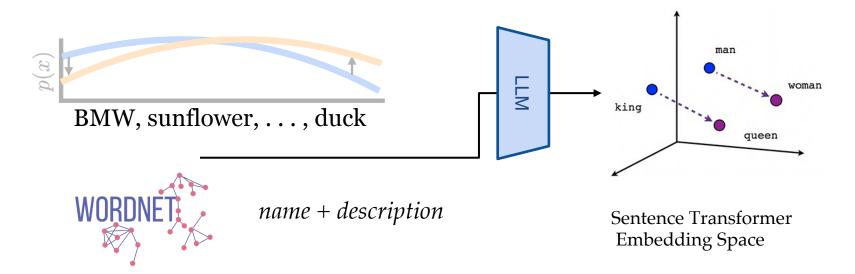
- Vocabulary size: |V|≈ 150k concepts
- Want to estimate value of unseen concepts from just a few thousand results



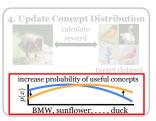


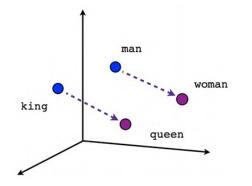


- Vocabulary size: |V|≈ 150k concepts
- Want to estimate value of unseen concepts from just a few thousand results

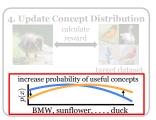


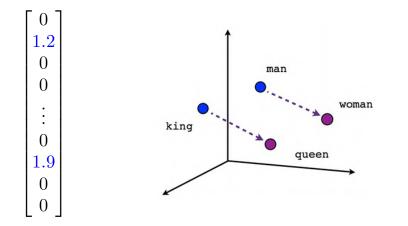
"Prospecting" in concept-embedding space



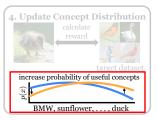


Sentence Transformer Embedding Space "Prospecting" in concept-embedding space

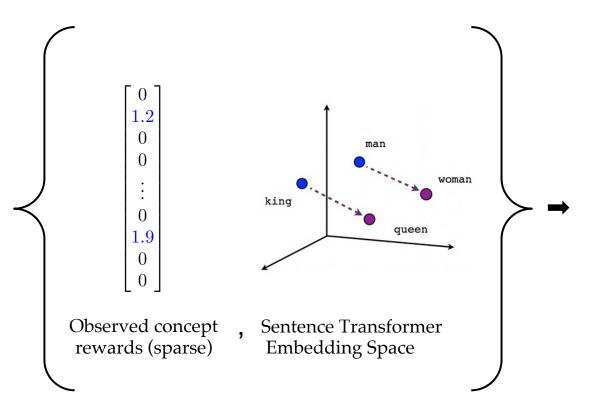


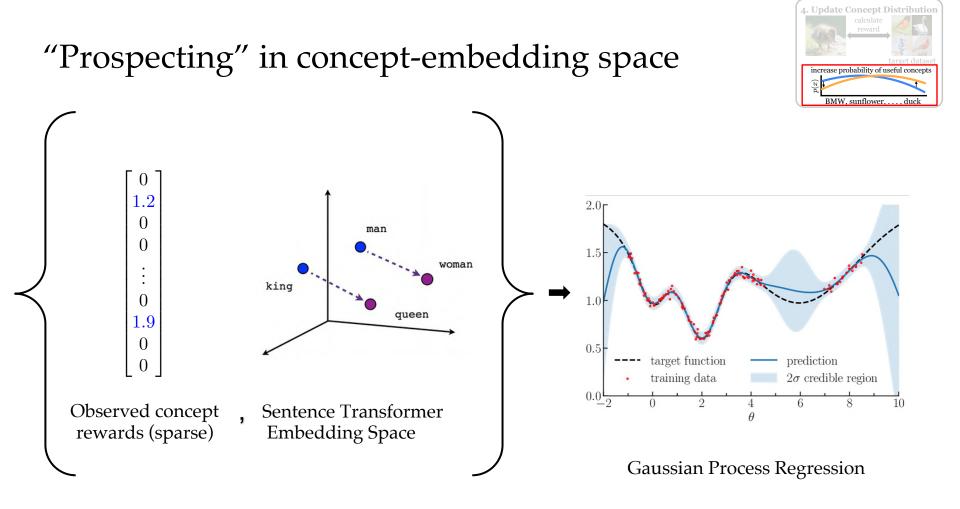


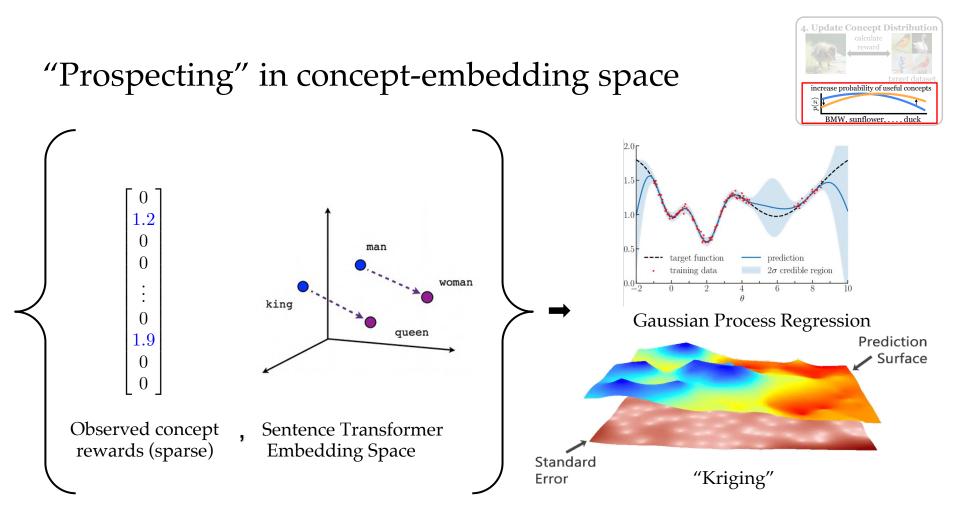
Observed concept rewards (sparse) Sentence Transformer Embedding Space



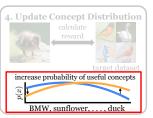
"Prospecting" in concept-embedding space



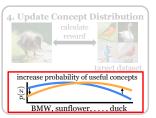


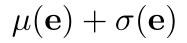


Predicting Rewards / Forming Distribution

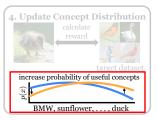


Predicting Rewards / Forming Distribution

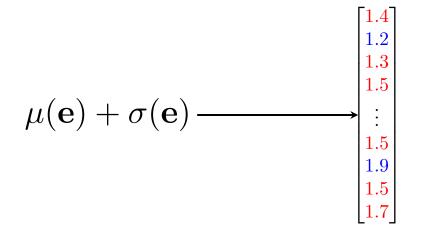




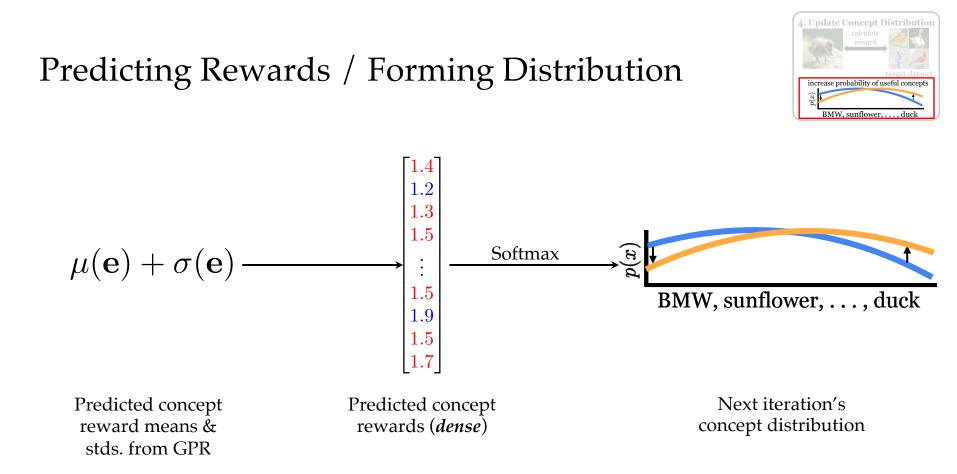
Predicted concept reward means & stds. from GPR



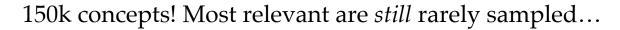
Predicting Rewards / Forming Distribution

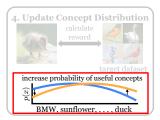


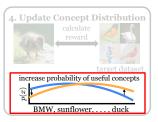
Predicted concept reward means & stds. from GPR Predicted concept rewards (*dense*)



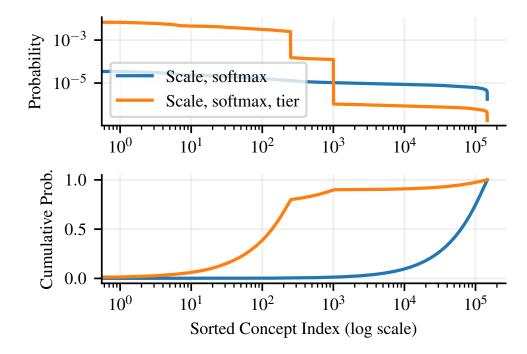
Tiering



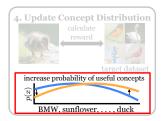




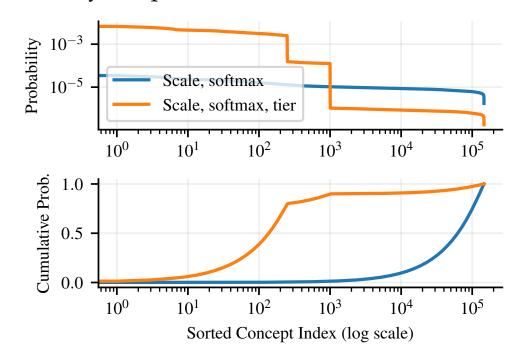
150k concepts! Most relevant are *still* rarely sampled...



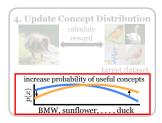
Tiering



150k concepts! Most relevant are *still* rarely sampled...

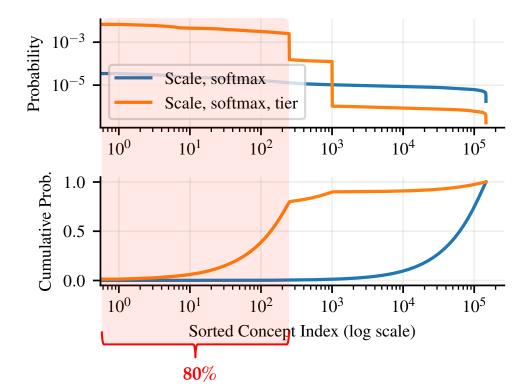


Tiering



150k concepts! Most relevant are *still* rarely sampled...

• Top 250 concepts sampled 80% of the time



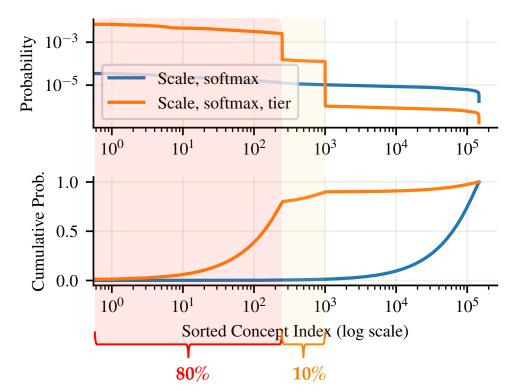
4. Update Concept Distribution calculate reward tarret dataset

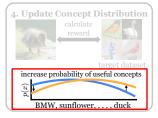
150k concepts! Most relevant are *still* rarely sampled...

• Top 250 concepts sampled 80% of the time

Tiering

• 251–1000 ranked concepts sampled 10% of the time



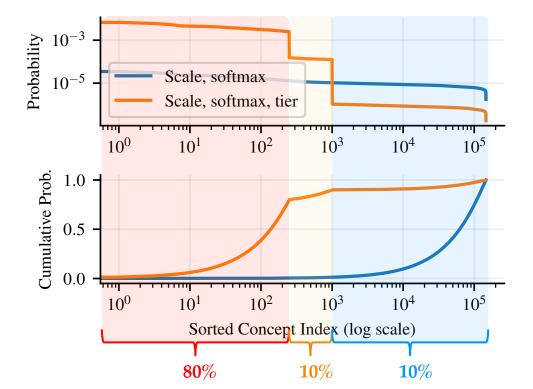


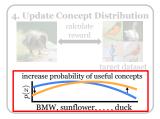
150k concepts! Most relevant are *still* rarely sampled...

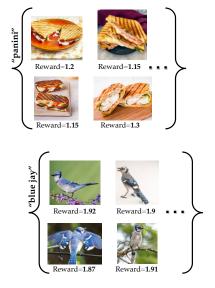
• Top 250 concepts sampled 80% of the time

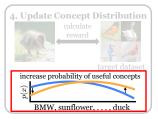
Tiering

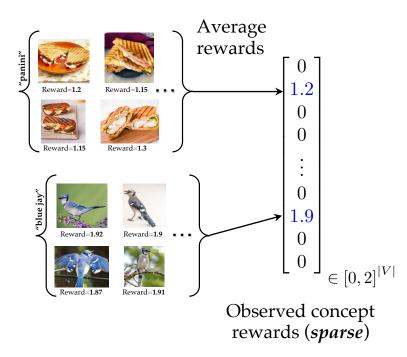
- 251–1000 ranked concepts sampled 10% of the time
- Remaining concepts sampled 10% of the time

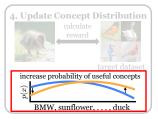


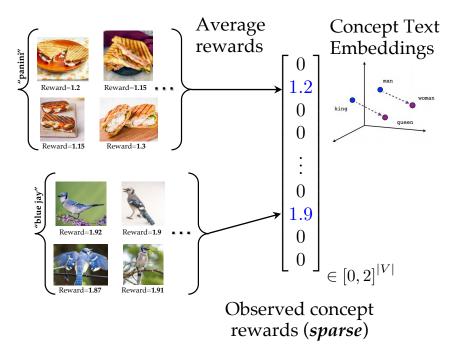


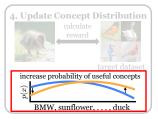


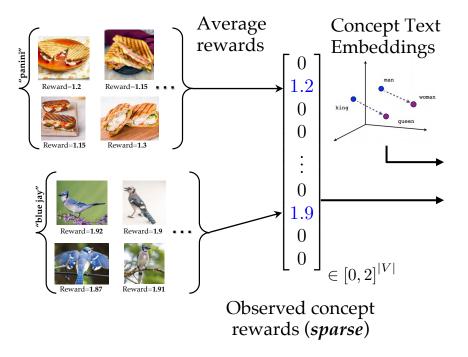


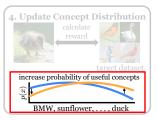


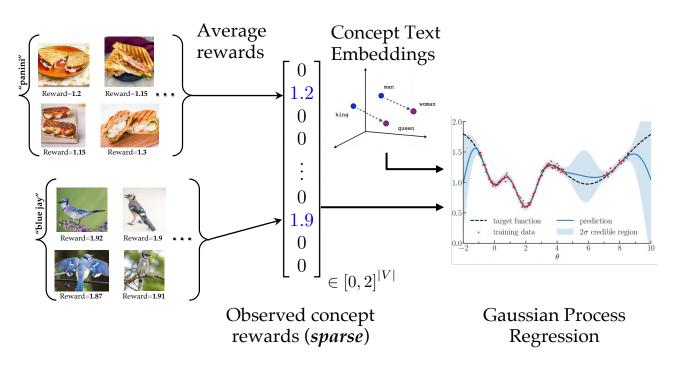


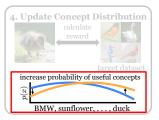


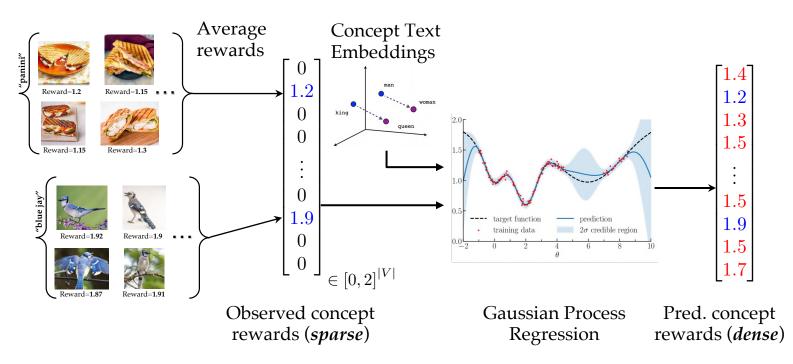


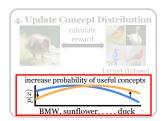


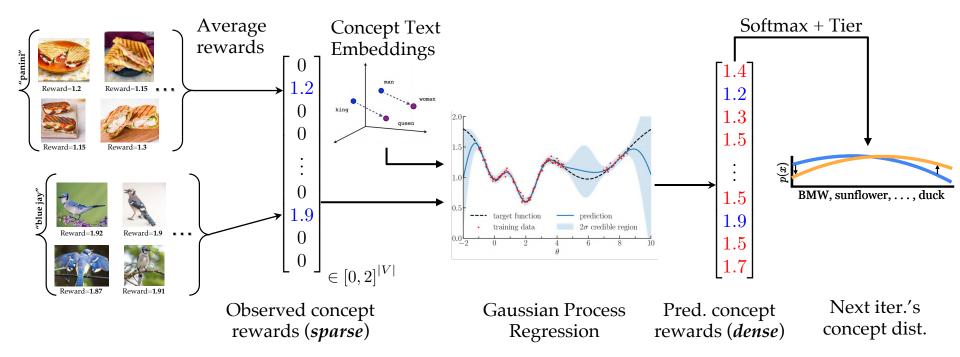




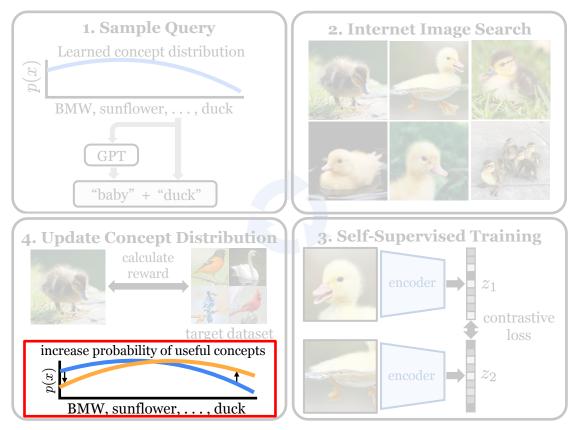




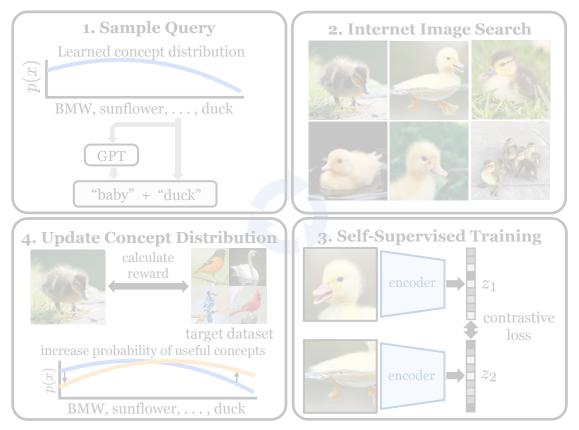




Internet Explorer Method



Internet Explorer Method



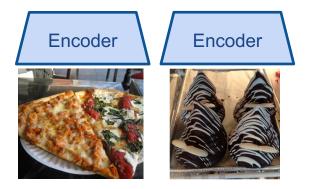
Images that we search for and download

Images that we search for and download

Representation space in which we compare images

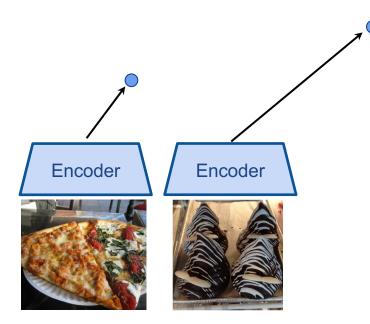
Iteration 0:

Iteration 0:

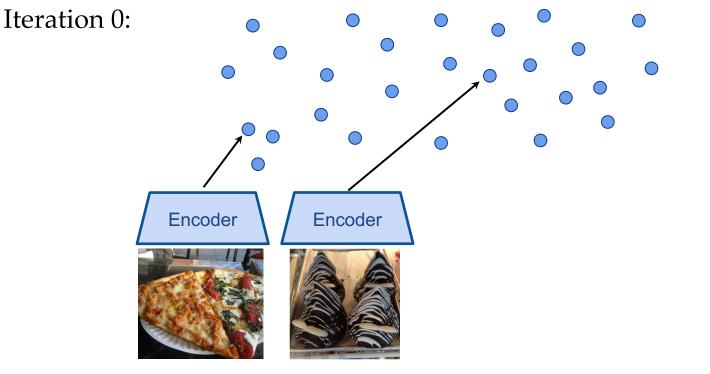


Target dataset images

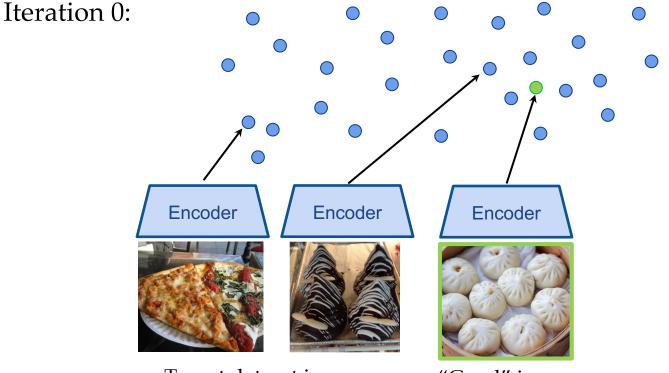
Iteration 0:



Target dataset images

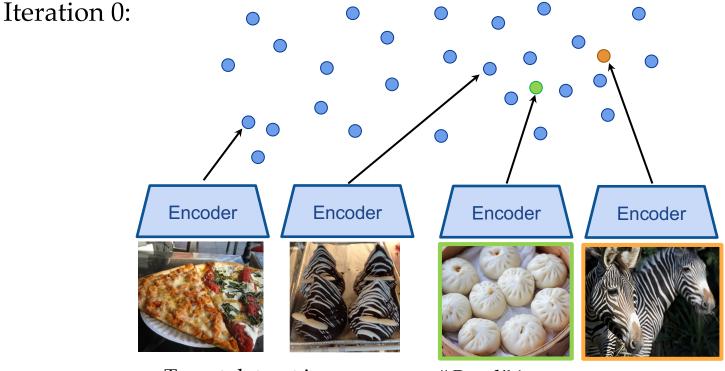


Target dataset images



Target dataset images

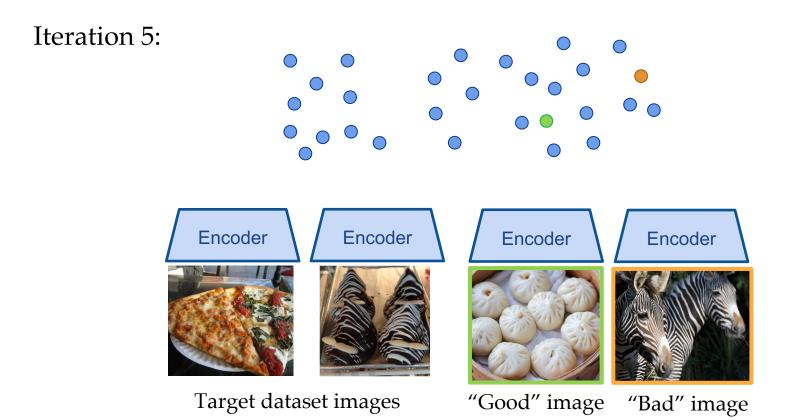
"Good" image



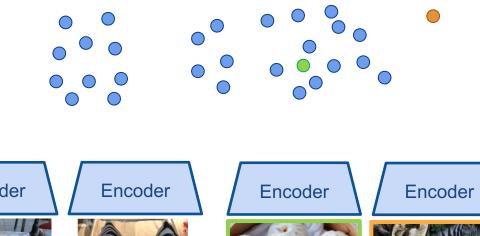
Target dataset images

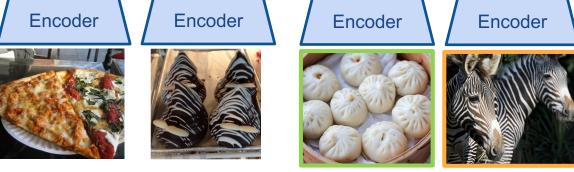
"Good" image "

"Bad" image



Iteration 10:





Target dataset images

"Good" image

"Bad" image

Results

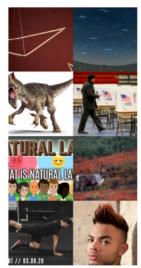
Target dataset: Birdsnap

Target dataset: Birdsnap

Target dataset: Birdsnap

Target dataset: Birdsnap

Iteration 0



Iteration 1

Target dataset: Birdsnap

Iteration 0

Iteration 1

Target dataset: Birdsnap

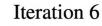
Iteration 0

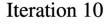
Iteration 1

Target dataset: Birdsnap

Iteration 0

Iteration 1



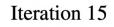


Self-supervised exploration progressively finds relevant data

Target dataset: Birdsnap

Iteration 0

Iteration 10



Model	Birdsnap	Flowers	Food	Pets	VOC2007	Images	GPU-hours
Fixed dataset, self-supervised MoCo-v3 (ImageNet + target)	39.9	94.6	78.3	85.3	58.0^{\dagger}	1.2 M	84

Model	Birdsnap	Flowers	Food	Pets	VOC2007	Images	GPU-hours
Fixed dataset, self-supervised MoCo-v3 (ImageNet + target)	39.9	94.6	78.3	85.3	58.0^{\dagger}	1.2 M	84
<i>Exploring the Internet</i> Random exploration	39.6 (-0.3)	$95.3\ (+0.7)$	77.0 (-1.3)	$85.6\ (+0.3)$	70.2 (+12.2)	2.2 M	124

Model	Birdsnap	Flowers	Food	Pets	VOC2007	Images	GPU-hours
Fixed dataset, self-supervised MoCo-v3 (ImageNet + target)	39.9	94.6	78.3	85.3	58.0^{\dagger}	1.2 M	84
<i>Exploring the Internet</i> Random exploration Search labels only	$\begin{array}{r} 39.6 (-0.3) \\ 47.1 (+7.2) \end{array}$	$95.3~(+0.7)\\96.3~(+1.7)$	77.0 (-1.3) 80.9 (+2.6)	$85.6\ (+0.3)\ 85.7\ (+0.4)$	$\begin{array}{c} 70.2 \ (+12.2) \\ 61.8 \ (+3.8) \end{array}$	2.2M 2.2M	$124\\124$

Model	Birdsnap	Flowers	Food	Pets	VOC2007	Images	GPU-hours
Fixed dataset, self-supervised MoCo-v3 (ImageNet + target)	39.9	94.6	78.3	85.3	58.0^{\dagger}	1.2 M	84
Exploring the Internet Random exploration Search labels only Ours++ (no label set)	$\begin{array}{r} 39.6 (-0.3) \\ 47.1 (+7.2) \\ 54.4 (+14.5) \end{array}$	$95.3 (+0.7) \\96.3 (+1.7) \\98.4 (+3.8)$	77.0 (-1.3) 80.9 (+2.6) 82.2 (+3.9)	85.6 (+0.3) 85.7 (+0.4) 89.6 (+4.3)	$\begin{array}{c} \textbf{70.2} \ (+12.2) \\ \textbf{61.8} \ \ (+3.8) \\ \textbf{80.1} \ (+\textbf{22.1}) \end{array}$	2.2M 2.2M 2.2M	$124 \\ 124 \\ 124$

Model	Birdsnap	Flowers	Food	Pets	VOC2007	Images	GPU-hours
Fixed dataset, self-supervised MoCo-v3 (ImageNet + target)	39.9	94.6	78.3	85.3	58.0^{+}	1.2 M	84
Exploring the Internet							
Random exploration	$39.6 \ (-0.3)$	95.3(+0.7)	77.0(-1.3)	$85.6\ (+0.3)$	$70.2 \ (+12.2)$	2.2M	124
Search labels only	$47.1 \ (+7.2)$	96.3(+1.7)	80.9(+2.6)	85.7(+0.4)	61.8 (+3.8)	2.2M	124
Ours++ (no label set)	54.4 (+14.5)	98.4(+3.8)	82.2(+3.9)	89.6(+4.3)	80.1(+22.1)	2.2M	124
Ours++ (with label set)	62.8(+22.9)	99.1(+4.5)	84.6 (+6.3)	90.8 (+ 5.5)	79.6 (+21.6)	2.2M	124

Model	Birdsnap	Flowers	Food	Pets	VOC2007	Images	GPU-hours	
Fixed dataset, self-supervised MoCo-v3 (ImageNet + target)	39.9	94.6	78.3	85.3	58.0^{\dagger}	1.2 M	84 ~	
Exploring the Internet				-	,			+40 hrs
Random exploration	$39.6 \ (-0.3)$	95.3(+0.7)	77.0(-1.3)	85.6 (+0.3)	$70.2 \ (+12.2)$	2.2M	124	
Search labels only	47.1 (+7.2)	96.3(+1.7)	80.9(+2.6)	85.7(+0.4)	61.8(+3.8)	2.2M	124	on 1 GPU
Ours++ (no label set)	54.4 (+14.5)	98.4(+3.8)	82.2(+3.9)	89.6(+4.3)	80.1 (+22.1)	2.2M	124	/
Ours++ (with label set)	62.8(+22.9)	99.1(+4.5)	84.6 (+6.3)	90.8(+5.5)	79.6 (+21.6)	2.2M	124	

Model	Birdsnap	Flowers	Food	Pets	VOC2007	Images	GPU-hours	
Fixed dataset, self-supervised MoCo-v3 (ImageNet + target)	39.9	94.6	78.3	85.3	58.0^{\dagger}	1.2 M	84	
Exploring the Internet								+40 hrs
Random exploration	39.6 (-0.3)	95.3(+0.7)	77.0 (-1.3)	85.6(+0.3)	$70.2 \ (+12.2)$	2.2M	124	
Search labels only	47.1 (+7.2)	96.3(+1.7)	80.9(+2.6)	85.7(+0.4)	61.8(+3.8)	2.2M	124	on 1 GPU
Ours++ (no label set)	54.4 (+14.5)	98.4(+3.8)	82.2(+3.9)	89.6(+4.3)	80.1(+22.1)	2.2M	124	/
Ours++ (with label set)	62.8(+22.9)	99.1(+4.5)	84.6(+6.3)	90.8(+5.5)	79.6(+21.6)	2.2M	124	
<i>Fixed dataset, language supervision</i> CLIP (oracle & 2x params)	57.1	96.0	86.4	88.4	86.7	400 M	4000	

Model	Birdsnap	Flowers	Food	Pets	VOC2007	Images	GPU-hours	
Fixed dataset, self-supervised MoCo-v3 (ImageNet + target)	39.9	94.6	78.3	85.3	58.0^{\dagger}	1.2 M	84 🥆	
Exploring the Internet								\rightarrow +40 hrs
Random exploration	39.6 (-0.3)	95.3 (+0.7)	77.0(-1.3)	85.6 (+0.3)	$70.2 \ (+12.2)$	2.2M	124	
Search labels only	47.1 (+7.2)	96.3(+1.7)	80.9(+2.6)	85.7(+0.4)	61.8 (+3.8)	2.2M	124	on 1 GPU
Ours++ (no label set)	54.4 (+14.5)	98.4(+3.8)	82.2(+3.9)	89.6(+4.3)	80.1(+22.1)	2.2M	124	
Ours++ (with label set)	62.8(+22.9)	99.1(+4.5)	84.6 (+6.3)	90.8(+5.5)	79.6 (+21.6)	2.2M	124	32x time,
Fixed dataset, language supervision CLIP (oracle & 2x params)	57.1	96.0	86.4	88.4	86.7	400 M	4000 🗲	180x data

	Birdsnap	Flowers	Food	Pets	VOC2007	Images Downloaded
Target test set size	1849	6142	25246	3663	4952	_
<i>No exploration</i> Target training set overlap	1 (0.05%)	5~(0.01%)	34 (0.13%)	21 (0.57%)	0 (0.00%)	_

	Birdsnap	Flowers	Food	Pets	VOC2007	Images Downloaded
Target test set size	1849	6142	25246	3663 4952		_
<i>No exploration</i> Target training set overlap	1 (0.05%)	5 (0.01%)	34 (0.13%)	21 (0.57%)	0 (0.00%)	_
Internet Explorer Ours++ (no label set)	28(+1.46%)	11(+0.01%)	35(+0.00%)	26(+0.14%)	1(+0.02%)	$\approx 10^6$

	Birdsnap Flowers		Food	Pets	VOC2007	Images Downloaded
Target test set size	1849	6142	25246	3663	4952	_
<i>No exploration</i> Target training set overlap	1 (0.05%)	5 (0.01%)	34 (0.13%)	21 (0.57%)	0 (0.00%)	_
Internet Explorer Ours++ (no label set) Ours++ (with label set)	$28 (+1.46\%) \\ 57 (+3.03\%)$	$\frac{11(+0.01\%)}{27(+0.36\%)}$	$35 (+0.00\%) \ 35 (+0.00\%)$	$26 (+0.14\%) \\ 43 (+0.60\%)$		$ \approx 10^6 \\ \approx 10^6 $

But we are finding very relevant images...

Oxford-IIIT Pets

Test Img.

Ranked Nearest Neighbors in Downloaded Images

Food101

Test Img.

Ranked Nearest Neighbors in Downloaded Images

Oxford Flowers 102

Test Img.

Ranked Nearest Neighbors in Downloaded Images

VOC2007

Test Img.

Ranked Nearest Neighbors in Downloaded Images

Google Bing flickr ...

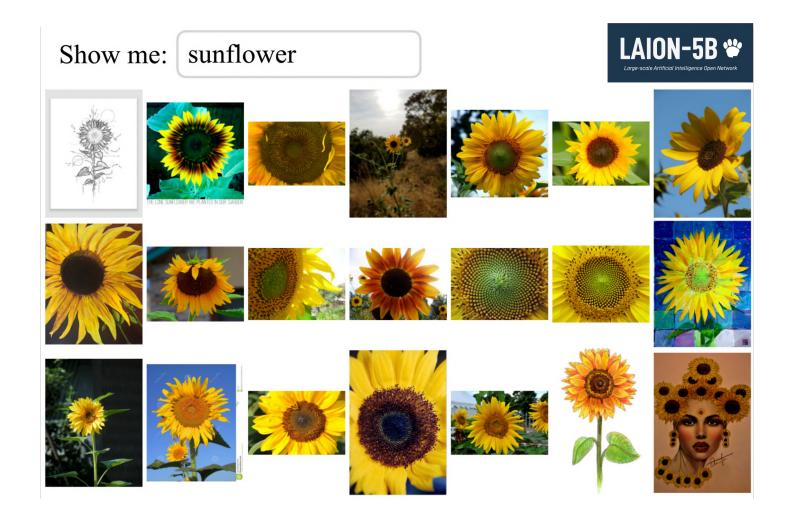
Google Bing flickr ...

Q: do we rely on fancy tricks in modern search engines?

Google Bing flickr ...

Q: do we rely on fancy tricks in modern search engines?

What if we could create our *own* search engine using just text?



Model	Flowers	Flowers		Food			Pets		

Caarla					
Google		Google		Google	

Model	Flowers		Food			Pets		
	Google	Goog	le		Google			
Fixed dataset								
MoCo-v3 (IN)	83.2	70.5			79.6			
MoCo-v3 (IN + target)	94.6	78.3			85.3			

Model	Flowers	Food	Pets
	Google	Google	Google
Fixed dataset			
MoCo-v3 (IN)	83.2	70.5	79.6
MoCo-v3 (IN + target)	94.6	78.3	85.3
Undirected search			
Random exploration	95.3	77.0	85.6

Model	Flowers	Food	Pets		
NIGUCI	Google	Google	Google		
Fixed dataset					
MoCo-v3 (IN)	83.2	70.5	79.6		
MoCo-v3 (IN + target)	94.6	78.3	85.3		
Undirected search					
Random exploration	95.3	77.0	85.6		
Internet Explorer					
Ours++ (no label set)	98.4	81.2	87.3		
Ours++ (with label set)	99.1	83.8	90.8		

Model	Flowers			Food	Pets		
	Google	Flickr	Google	Flickr	Google	Flickr	
Fixed dataset							
MoCo-v3 (IN)	83.2	83.2	70.5	70.5	79.6	79.6	
MoCo-v3 (IN + target)	94.6	94.6	78.3	78.3	85.3	85.3	
Undirected search							
Random exploration	95.3	95.2	77.0	80.0	85.6	84.4	
Internet Explorer							
Ours++ (no label set)	98.4	98.1	81.2	80.3	87.3	88.4	
Ours++ (with label set)	99.1	99.0	83.8	81.9	90.8	89.1	

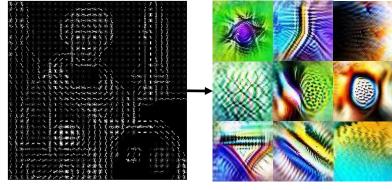
ModelGoog	Flowers			Food			Pets			
	Google	Flickr	LAION	Google	Flickr	LAION	Google	Flickr	LAION	_
Fixed dataset										_
MoCo-v3 (IN)	83.2	83.2	83.2	70.5	70.5	70.5	79.6	79.6	79.6	
MoCo-v3 (IN + target)	94.6	94.6	94.6	78.3	78.3	78.3	85.3	85.3	85.3	-
Undirected search										-
Random exploration	95.3	95.2	94.8	77.0	80.0	80.2	85.6	84.4	85.1	
Internet Explorer										
Ours++ (no label set)	98.4	98.1	94.6	81.2	80.3	80.9	87.3	88.4	85.9	
Ours++ (with label set)	99.1	99.0	95.8	83.8	81.9	81.0	90.8	89.1	86.7	4

• Scale to larger / more diverse datasets like ImageNet

- Scale to larger / more diverse datasets like ImageNet
- Apply to more challenging vision tasks, videos, and robotics

- Scale to larger / more diverse datasets like ImageNet
- Apply to more challenging vision tasks, videos, and robotics
- Finetune a CLIP model online using captions + search terms!

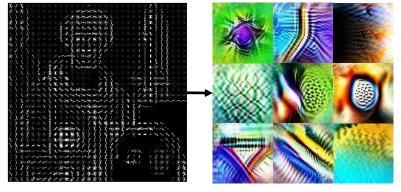
Handcrafted features



Handcrafted features

Model learns features

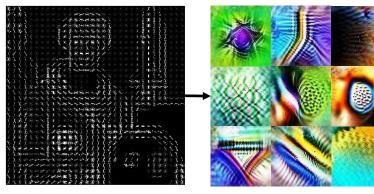
Internet Explorer



Handcrafted features

Model learns features

Internet Explorer

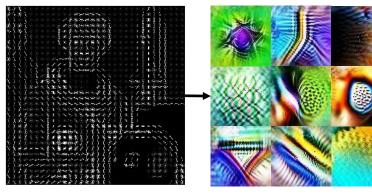


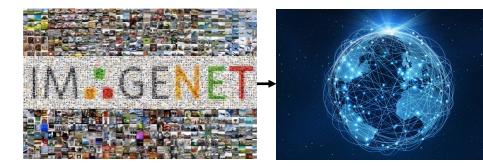
Handcrafted features

Model learns features

Handcrafted dataset

Internet Explorer





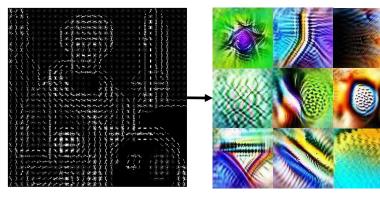
Handcrafted features

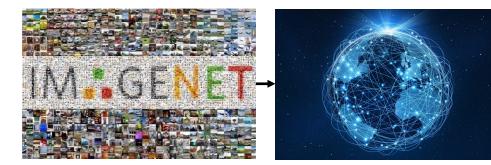
Model learns features

Handcrafted dataset

Model learns to craft its own dataset

Internet Explorer





Handcrafted features

Model learns features

Handcrafted dataset

Model learns to craft its own dataset

Your Diffusion Model is Secretly a Zero-Shot Classifier

Alexander C. Li Mihir Prabhudesai Shivam Duggal Ellis Brown Deepak Pathak

Carnegie Mellon University

Your Diffusion Model is Secretly a Zero-Shot Classifier

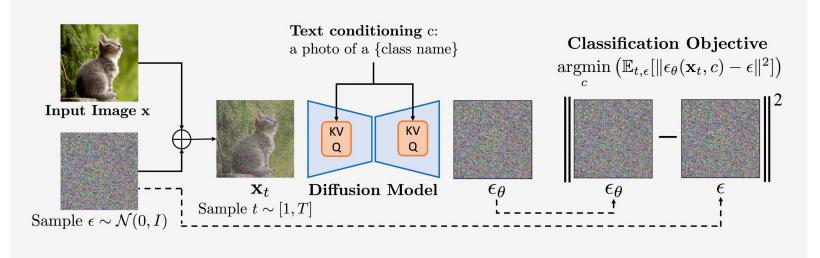
Alexander C. Li Mihir Prabhudesai

desai Shivam Duggal Ellis Brown

Deepak Pathak

Carnegie Mellon University

"Diffusion Classifier"



Bayes' Rule + Generative Model → Classification!

$$p_{\theta}(\mathbf{c}_i \mid \mathbf{x}) = \frac{p(\mathbf{c}_i) \ p_{\theta}(\mathbf{x} \mid \mathbf{c}_i)}{\sum_j p(\mathbf{c}_j) \ p_{\theta}(\mathbf{x} \mid \mathbf{c}_j)}$$

Bayes' Rule + Generative Model → Classification!

simple

$$p_{\theta}(\mathbf{c}_{i} \mid \mathbf{x}) = \frac{p(\mathbf{c}_{i}) \ p_{\theta}(\mathbf{x} \mid \mathbf{c}_{i})}{\sum_{j} p(\mathbf{c}_{j}) \ p_{\theta}(\mathbf{x} \mid \mathbf{c}_{j})}$$
We use a uniform label distribution and a simple approximate ELBO to get: ELBO $\approx -\mathbb{E}_{t,\epsilon}[\|\epsilon - \epsilon_{\theta}(\mathbf{x}_{t}, \mathbf{c}_{i})\|^{2}]$

Bayes' Rule + Generative Model → Classification!

$$p_{\theta}(\mathbf{c}_{i} \mid \mathbf{x}) = \frac{p(\mathbf{c}_{i}) \ p_{\theta}(\mathbf{x} \mid \mathbf{c}_{i})}{\sum_{j} p(\mathbf{c}_{j}) \ p_{\theta}(\mathbf{x} \mid \mathbf{c}_{j})}$$
We use a uniform label distribution and a simple approximate ELBO to get: ELBO $\approx -\mathbb{E}_{t,\epsilon}[\|\epsilon - \epsilon_{\theta}(\mathbf{x}_{t}, \mathbf{c}_{i})\|^{2}]$

$$p_{\theta}(\mathbf{c}_{i} \mid \mathbf{x}) \approx \frac{\exp\{-\mathbb{E}_{t,\epsilon}[\|\epsilon - \epsilon_{\theta}(\mathbf{x}_{t}, \mathbf{c}_{i})\|^{2}]\}}{\sum_{j} \exp\{-\mathbb{E}_{t,\epsilon}[\|\epsilon - \epsilon_{\theta}(\mathbf{x}_{t}, \mathbf{c}_{i})\|^{2}]\}}$$

Diffusion Classifier – **OOD Generalization**

	Zero-shot?	Food101	CIFAR10	FGVC	Oxford Pets	Flowers102	STL10	ImageNet	ObjectNet
Synthetic SD Data	1	12.6	35.3	9.4	31.3	22.1	38.0	18.9	5.2
SD Features	×	73.0	84.0	35.2	75.9	70.0	87.2	56.6	10.2
Diffusion Classifier (ours)	1	77.9	87.1	24.3	86.2	59.4	95.3	58.9	38.3
CLIP ResNet-50	1	81.1	75.6	19.3	85.4	65.9	94.3	58.2	40.0
OpenCLIP ViT-H/14	1	92.7	97.3	42.3	94.6	79.9	98.3	76.8	69.2

Using Stable Diffusion as an image-text model

Diffusion Classifier – OOD Generalization

	Zero-shot?	Food101	CIFAR10	FGVC	Oxford Pets	Flowers102	STL10	ImageNet	ObjectNet
Synthetic SD Data	1	12.6	35.3	9.4	31.3	22.1	38.0	18.9	5.2
SD Features	×	73.0	84.0	35.2	75.9	70.0	87.2	56.6	10.2
Diffusion Classifier (ours)	1	77.9	87.1	24.3	86.2	59.4	95.3	58.9	38.3
CLIP ResNet-50	1	81.1	75.6	19.3	85.4	65.9	94.3	58.2	40.0
OpenCLIP ViT-H/14	1	92.7	97.3	42.3	94.6	79.9	98.3	76.8	69.2

Using Stable Diffusion as an image-text model

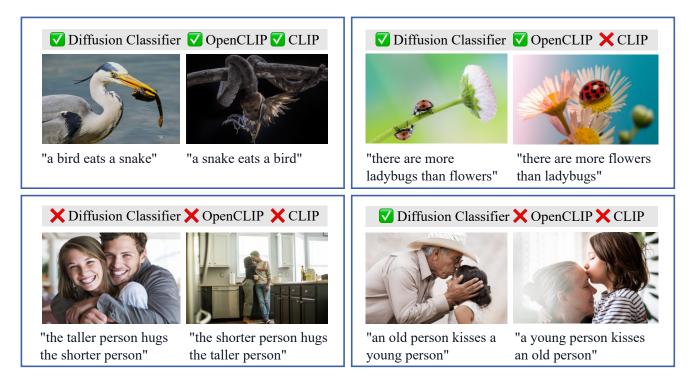
Method	ID	OOD				
Withou	IN	IN-v2	IN-A	ObjectNet		
ResNet-18	74.1	57.3	15.0	26.6		
ResNet-34	78.1	59.8	10.5	31.6		
ResNet-50	79.7	61.6	9.8	35.6		
ResNet-101	82.2	63.2	19.5	38.2		
ViT-L/32	79.0	61.6	26.3	29.9		
ViT-L/16	81.0	66.6	25.6	36.7		
ViT-B/16	83.4	66.6	30.1	37.8		
Diffusion Classifier	78.9	62.1	22.6	32.3		

Using **Diffusion Transformers (DiT)** as a class-conditioned diffusion model

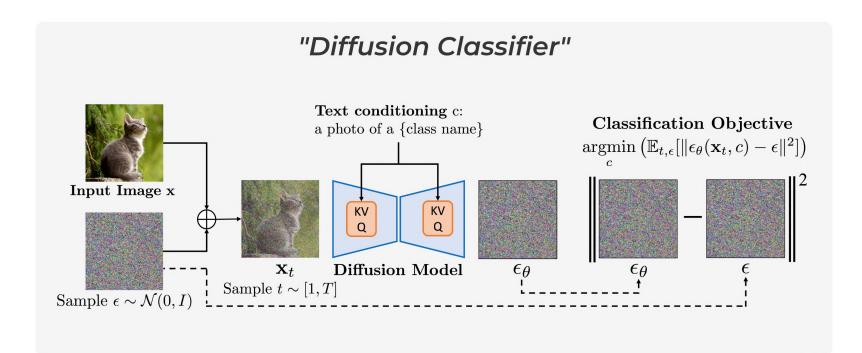
Table 3. Diffusion Classifier performs well ID and OOD.

Peebles & Xie. Scalable Diffusion Models with Transformers (DiT) Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models (Stable Diffusion)

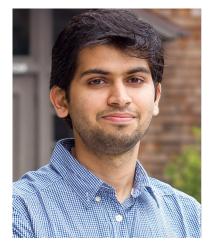
Diffusion Classifier – Compositional Reasoning



Thrush et al. Winoground: Probing Vision and Language Models for Visio-Linguistic Compositionality

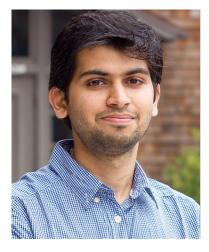


Acknowledgements



Deepak Pathak (advisor)

Thank you, Thesis Committee!



Deepak Pathak (advisor)

Deva Ramanan

Alyosha Efros

Thank you, LEAP Lab!

Thank you, MSCS folks!

Thanks to all my friends in Smith Hall, NSH, and around CMU for a great 2 years!

Thanks to my family for your support throughout!