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Static datasets are miniscule and out-of-date in comparison to the Internet!
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What can we do with the full breadth of the Internet?

Cover long-tail corner cases
Find up-to-date data 

Learn features for any task
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Figure 3. Learned concept sampling distribution. Given esti-
mated scores for each of the 146, 347 concepts, we need to choose
how often to sample each one in order to balance exploration and
exploitation. Top: we scale our scores to a desired temperature,
then take the softmax to obtain a distribution over concepts. Fi-
nally, we create tiers so that the top 250 concepts have 80% of the
probability mass, and the next 750 have 10%. This ensures that we
sample enough from the top 1,000 concepts while still exploring
other concepts with lower scores. Bottom: the top 1000 concepts
are only sampled a tiny fraction of the time without tiering.

speedup from GPR is Tbase
TGPR

⇡ s log s.

The proof is in Appendix D. For our vocabulary and target
datasets, s ⇡ 100. This shows that a predictive model like
GPR is crucial for quickly identifying all useful concepts.

2.7. Query sampling distribution

Once we have estimates for the quality of each concept,
how do we determine what to search for next? We face
the age-old dilemma of exploration versus exploitation: we
need to sample the top concepts frequently enough to get
relevant training data for SSL, while at the same time, we
need sufficient exploration of promising untried concepts.

We use a sampling-based approach based on Boltzmann
exploration (Sutton, 1991). Boltzmann exploration sam-
ples based on a scaled softmax distribution p(ci) /
exp(r(ci)/⌧), where ⌧ is the temperature scaling. How-
ever, with a large vocabulary (action space) of 146, 347
concepts, it becomes difficult to tune ⌧ so that we sam-
ple the top concepts frequently enough without being too
skewed. Thus, we define a “tiering function” to adjust the
probability mass in specified intervals of our distribution.
Given a sorted discrete probability distribution p, interval
boundaries T0 = 0 < T1 < · · · < Tn, and interval masses
�0, . . . ,�n�1 such that

P
i
�i = 1, tiering computes a

new distribution:

p
tier
i

= �j

pi
PTj+1

k=Tj
pk

for j s.t. Tj  i < Tj+1 (3)

p
tier is a new distribution such that

PTj+1

k=Tj
p

tier = �j . We
use T0 = 0, T1 = 250, T2 = 1,000, T3 = 146,347, �0 =

0.8, �1 = 0.1, and �2 = 0.1. Simply put: we give the
highest-ranked 250 concepts 80% of the probability mass,
the next 750 concepts 10%, and all remaining concepts 10%.
Figure 3 shows that tiering the scaled softmax distribution
samples frequently enough from the top concepts while a
vanilla scaled softmax distribution does not.

3. Experimental Setting
3.1. Self-supervised Exploration

We assume that we have an unlabeled target dataset of im-
ages for which we would like to learn useful visual features.
We compare three methods:

1. Random: sample concepts uniformly from the vocab.
2. Ours: sample concepts from our learned distribution.
3. Ours++: additionally use GPT-generated descriptors.

3.2. Label Set-guided Exploration

We may sometimes know the set of labels for our task (e.g.,
“golden retriever”, etc.) even if we do not have image-label
pairs. Knowing the label set greatly accelerates learning on
the Internet, because it acts as a strong prior on what could
be useful. Using our text similarity model, we reduce the
size of the vocabulary by selecting the top 10% (14,635 con-
cepts) with the largest average top-k similarity to the label
set in text embedding space. We set k to a third of the size of
the label set to reduce the impact of outliers. Reducing the
size of the vocabulary strengthens our baselines by ensuring
that they only search for potentially useful concepts. We
compare 4 methods:

1. Labels: only search for labels.
2. Labels + relevant: search for labels half of the time,

and random concepts from the pruned vocabulary the
other half of the time.

3. Ours: sample labels half of the time and sample from
our learned concept distribution the other half.

4. Ours++: additionally use GPT-generated descriptors.

We call this setting “label set-guided,” since we have addi-
tional supervision in the form of the label set.

3.3. Datasets and Metrics

We evaluate Internet Explorer on 4 popular small-scale
fine-grained classification datasets: Birdsnap (Berg et al.,
2014), Flowers-102 (Nilsback & Zisserman, 2008), Food101
(Bossard et al., 2014), and Oxford-IIT Pets (Parkhi et al.,
2012). We also evaluate on Pascal VOC 2007 (Cls) (Evering-
ham et al., 2010), a coarse-grained multi-label classification
task. Finally, we try fMoW (Christie et al., 2018), a satellite
domain classification task. These small datasets consist of
2,040 to 75,750 training examples, making them ideal for
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Figure 3. Learned concept sampling distribution. Given esti-
mated scores for each of the 146, 347 concepts, we need to choose
how often to sample each one in order to balance exploration and
exploitation. Top: we scale our scores to a desired temperature,
then take the softmax to obtain a distribution over concepts. Fi-
nally, we create tiers so that the top 250 concepts have 80% of the
probability mass, and the next 750 have 10%. This ensures that we
sample enough from the top 1,000 concepts while still exploring
other concepts with lower scores. Bottom: the top 1000 concepts
are only sampled a tiny fraction of the time without tiering.

speedup from GPR is Tbase
TGPR

⇡ s log s.

The proof is in Appendix D. For our vocabulary and target
datasets, s ⇡ 100. This shows that a predictive model like
GPR is crucial for quickly identifying all useful concepts.

2.7. Query sampling distribution

Once we have estimates for the quality of each concept,
how do we determine what to search for next? We face
the age-old dilemma of exploration versus exploitation: we
need to sample the top concepts frequently enough to get
relevant training data for SSL, while at the same time, we
need sufficient exploration of promising untried concepts.

We use a sampling-based approach based on Boltzmann
exploration (Sutton, 1991). Boltzmann exploration sam-
ples based on a scaled softmax distribution p(ci) /
exp(r(ci)/⌧), where ⌧ is the temperature scaling. How-
ever, with a large vocabulary (action space) of 146, 347
concepts, it becomes difficult to tune ⌧ so that we sam-
ple the top concepts frequently enough without being too
skewed. Thus, we define a “tiering function” to adjust the
probability mass in specified intervals of our distribution.
Given a sorted discrete probability distribution p, interval
boundaries T0 = 0 < T1 < · · · < Tn, and interval masses
�0, . . . ,�n�1 such that

P
i
�i = 1, tiering computes a

new distribution:

p
tier
i

= �j

pi
PTj+1

k=Tj
pk

for j s.t. Tj  i < Tj+1 (3)

p
tier is a new distribution such that

PTj+1

k=Tj
p

tier = �j . We
use T0 = 0, T1 = 250, T2 = 1,000, T3 = 146,347, �0 =

0.8, �1 = 0.1, and �2 = 0.1. Simply put: we give the
highest-ranked 250 concepts 80% of the probability mass,
the next 750 concepts 10%, and all remaining concepts 10%.
Figure 3 shows that tiering the scaled softmax distribution
samples frequently enough from the top concepts while a
vanilla scaled softmax distribution does not.

3. Experimental Setting
3.1. Self-supervised Exploration

We assume that we have an unlabeled target dataset of im-
ages for which we would like to learn useful visual features.
We compare three methods:

1. Random: sample concepts uniformly from the vocab.
2. Ours: sample concepts from our learned distribution.
3. Ours++: additionally use GPT-generated descriptors.

3.2. Label Set-guided Exploration

We may sometimes know the set of labels for our task (e.g.,
“golden retriever”, etc.) even if we do not have image-label
pairs. Knowing the label set greatly accelerates learning on
the Internet, because it acts as a strong prior on what could
be useful. Using our text similarity model, we reduce the
size of the vocabulary by selecting the top 10% (14,635 con-
cepts) with the largest average top-k similarity to the label
set in text embedding space. We set k to a third of the size of
the label set to reduce the impact of outliers. Reducing the
size of the vocabulary strengthens our baselines by ensuring
that they only search for potentially useful concepts. We
compare 4 methods:

1. Labels: only search for labels.
2. Labels + relevant: search for labels half of the time,

and random concepts from the pruned vocabulary the
other half of the time.

3. Ours: sample labels half of the time and sample from
our learned concept distribution the other half.

4. Ours++: additionally use GPT-generated descriptors.

We call this setting “label set-guided,” since we have addi-
tional supervision in the form of the label set.

3.3. Datasets and Metrics

We evaluate Internet Explorer on 4 popular small-scale
fine-grained classification datasets: Birdsnap (Berg et al.,
2014), Flowers-102 (Nilsback & Zisserman, 2008), Food101
(Bossard et al., 2014), and Oxford-IIT Pets (Parkhi et al.,
2012). We also evaluate on Pascal VOC 2007 (Cls) (Evering-
ham et al., 2010), a coarse-grained multi-label classification
task. Finally, we try fMoW (Christie et al., 2018), a satellite
domain classification task. These small datasets consist of
2,040 to 75,750 training examples, making them ideal for
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Figure 3. Learned concept sampling distribution. Given esti-
mated scores for each of the 146, 347 concepts, we need to choose
how often to sample each one in order to balance exploration and
exploitation. Top: we scale our scores to a desired temperature,
then take the softmax to obtain a distribution over concepts. Fi-
nally, we create tiers so that the top 250 concepts have 80% of the
probability mass, and the next 750 have 10%. This ensures that we
sample enough from the top 1,000 concepts while still exploring
other concepts with lower scores. Bottom: the top 1000 concepts
are only sampled a tiny fraction of the time without tiering.

speedup from GPR is Tbase
TGPR

⇡ s log s.

The proof is in Appendix D. For our vocabulary and target
datasets, s ⇡ 100. This shows that a predictive model like
GPR is crucial for quickly identifying all useful concepts.

2.7. Query sampling distribution

Once we have estimates for the quality of each concept,
how do we determine what to search for next? We face
the age-old dilemma of exploration versus exploitation: we
need to sample the top concepts frequently enough to get
relevant training data for SSL, while at the same time, we
need sufficient exploration of promising untried concepts.

We use a sampling-based approach based on Boltzmann
exploration (Sutton, 1991). Boltzmann exploration sam-
ples based on a scaled softmax distribution p(ci) /
exp(r(ci)/⌧), where ⌧ is the temperature scaling. How-
ever, with a large vocabulary (action space) of 146, 347
concepts, it becomes difficult to tune ⌧ so that we sam-
ple the top concepts frequently enough without being too
skewed. Thus, we define a “tiering function” to adjust the
probability mass in specified intervals of our distribution.
Given a sorted discrete probability distribution p, interval
boundaries T0 = 0 < T1 < · · · < Tn, and interval masses
�0, . . . ,�n�1 such that

P
i
�i = 1, tiering computes a

new distribution:

p
tier
i

= �j

pi
PTj+1

k=Tj
pk

for j s.t. Tj  i < Tj+1 (3)

p
tier is a new distribution such that

PTj+1

k=Tj
p

tier = �j . We
use T0 = 0, T1 = 250, T2 = 1,000, T3 = 146,347, �0 =

0.8, �1 = 0.1, and �2 = 0.1. Simply put: we give the
highest-ranked 250 concepts 80% of the probability mass,
the next 750 concepts 10%, and all remaining concepts 10%.
Figure 3 shows that tiering the scaled softmax distribution
samples frequently enough from the top concepts while a
vanilla scaled softmax distribution does not.

3. Experimental Setting
3.1. Self-supervised Exploration

We assume that we have an unlabeled target dataset of im-
ages for which we would like to learn useful visual features.
We compare three methods:

1. Random: sample concepts uniformly from the vocab.
2. Ours: sample concepts from our learned distribution.
3. Ours++: additionally use GPT-generated descriptors.

3.2. Label Set-guided Exploration

We may sometimes know the set of labels for our task (e.g.,
“golden retriever”, etc.) even if we do not have image-label
pairs. Knowing the label set greatly accelerates learning on
the Internet, because it acts as a strong prior on what could
be useful. Using our text similarity model, we reduce the
size of the vocabulary by selecting the top 10% (14,635 con-
cepts) with the largest average top-k similarity to the label
set in text embedding space. We set k to a third of the size of
the label set to reduce the impact of outliers. Reducing the
size of the vocabulary strengthens our baselines by ensuring
that they only search for potentially useful concepts. We
compare 4 methods:

1. Labels: only search for labels.
2. Labels + relevant: search for labels half of the time,

and random concepts from the pruned vocabulary the
other half of the time.

3. Ours: sample labels half of the time and sample from
our learned concept distribution the other half.

4. Ours++: additionally use GPT-generated descriptors.

We call this setting “label set-guided,” since we have addi-
tional supervision in the form of the label set.

3.3. Datasets and Metrics

We evaluate Internet Explorer on 4 popular small-scale
fine-grained classification datasets: Birdsnap (Berg et al.,
2014), Flowers-102 (Nilsback & Zisserman, 2008), Food101
(Bossard et al., 2014), and Oxford-IIT Pets (Parkhi et al.,
2012). We also evaluate on Pascal VOC 2007 (Cls) (Evering-
ham et al., 2010), a coarse-grained multi-label classification
task. Finally, we try fMoW (Christie et al., 2018), a satellite
domain classification task. These small datasets consist of
2,040 to 75,750 training examples, making them ideal for
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Figure 3. Learned concept sampling distribution. Given esti-
mated scores for each of the 146, 347 concepts, we need to choose
how often to sample each one in order to balance exploration and
exploitation. Top: we scale our scores to a desired temperature,
then take the softmax to obtain a distribution over concepts. Fi-
nally, we create tiers so that the top 250 concepts have 80% of the
probability mass, and the next 750 have 10%. This ensures that we
sample enough from the top 1,000 concepts while still exploring
other concepts with lower scores. Bottom: the top 1000 concepts
are only sampled a tiny fraction of the time without tiering.

speedup from GPR is Tbase
TGPR

⇡ s log s.

The proof is in Appendix D. For our vocabulary and target
datasets, s ⇡ 100. This shows that a predictive model like
GPR is crucial for quickly identifying all useful concepts.

2.7. Query sampling distribution

Once we have estimates for the quality of each concept,
how do we determine what to search for next? We face
the age-old dilemma of exploration versus exploitation: we
need to sample the top concepts frequently enough to get
relevant training data for SSL, while at the same time, we
need sufficient exploration of promising untried concepts.

We use a sampling-based approach based on Boltzmann
exploration (Sutton, 1991). Boltzmann exploration sam-
ples based on a scaled softmax distribution p(ci) /
exp(r(ci)/⌧), where ⌧ is the temperature scaling. How-
ever, with a large vocabulary (action space) of 146, 347
concepts, it becomes difficult to tune ⌧ so that we sam-
ple the top concepts frequently enough without being too
skewed. Thus, we define a “tiering function” to adjust the
probability mass in specified intervals of our distribution.
Given a sorted discrete probability distribution p, interval
boundaries T0 = 0 < T1 < · · · < Tn, and interval masses
�0, . . . ,�n�1 such that

P
i
�i = 1, tiering computes a

new distribution:

p
tier
i
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pi
PTj+1

k=Tj
pk

for j s.t. Tj  i < Tj+1 (3)

p
tier is a new distribution such that

PTj+1

k=Tj
p

tier = �j . We
use T0 = 0, T1 = 250, T2 = 1,000, T3 = 146,347, �0 =

0.8, �1 = 0.1, and �2 = 0.1. Simply put: we give the
highest-ranked 250 concepts 80% of the probability mass,
the next 750 concepts 10%, and all remaining concepts 10%.
Figure 3 shows that tiering the scaled softmax distribution
samples frequently enough from the top concepts while a
vanilla scaled softmax distribution does not.

3. Experimental Setting
3.1. Self-supervised Exploration

We assume that we have an unlabeled target dataset of im-
ages for which we would like to learn useful visual features.
We compare three methods:

1. Random: sample concepts uniformly from the vocab.
2. Ours: sample concepts from our learned distribution.
3. Ours++: additionally use GPT-generated descriptors.

3.2. Label Set-guided Exploration

We may sometimes know the set of labels for our task (e.g.,
“golden retriever”, etc.) even if we do not have image-label
pairs. Knowing the label set greatly accelerates learning on
the Internet, because it acts as a strong prior on what could
be useful. Using our text similarity model, we reduce the
size of the vocabulary by selecting the top 10% (14,635 con-
cepts) with the largest average top-k similarity to the label
set in text embedding space. We set k to a third of the size of
the label set to reduce the impact of outliers. Reducing the
size of the vocabulary strengthens our baselines by ensuring
that they only search for potentially useful concepts. We
compare 4 methods:

1. Labels: only search for labels.
2. Labels + relevant: search for labels half of the time,

and random concepts from the pruned vocabulary the
other half of the time.

3. Ours: sample labels half of the time and sample from
our learned concept distribution the other half.

4. Ours++: additionally use GPT-generated descriptors.

We call this setting “label set-guided,” since we have addi-
tional supervision in the form of the label set.

3.3. Datasets and Metrics

We evaluate Internet Explorer on 4 popular small-scale
fine-grained classification datasets: Birdsnap (Berg et al.,
2014), Flowers-102 (Nilsback & Zisserman, 2008), Food101
(Bossard et al., 2014), and Oxford-IIT Pets (Parkhi et al.,
2012). We also evaluate on Pascal VOC 2007 (Cls) (Evering-
ham et al., 2010), a coarse-grained multi-label classification
task. Finally, we try fMoW (Christie et al., 2018), a satellite
domain classification task. These small datasets consist of
2,040 to 75,750 training examples, making them ideal for
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Figure 3. Learned concept sampling distribution. Given esti-
mated scores for each of the 146, 347 concepts, we need to choose
how often to sample each one in order to balance exploration and
exploitation. Top: we scale our scores to a desired temperature,
then take the softmax to obtain a distribution over concepts. Fi-
nally, we create tiers so that the top 250 concepts have 80% of the
probability mass, and the next 750 have 10%. This ensures that we
sample enough from the top 1,000 concepts while still exploring
other concepts with lower scores. Bottom: the top 1000 concepts
are only sampled a tiny fraction of the time without tiering.

speedup from GPR is Tbase
TGPR

⇡ s log s.

The proof is in Appendix D. For our vocabulary and target
datasets, s ⇡ 100. This shows that a predictive model like
GPR is crucial for quickly identifying all useful concepts.

2.7. Query sampling distribution

Once we have estimates for the quality of each concept,
how do we determine what to search for next? We face
the age-old dilemma of exploration versus exploitation: we
need to sample the top concepts frequently enough to get
relevant training data for SSL, while at the same time, we
need sufficient exploration of promising untried concepts.

We use a sampling-based approach based on Boltzmann
exploration (Sutton, 1991). Boltzmann exploration sam-
ples based on a scaled softmax distribution p(ci) /
exp(r(ci)/⌧), where ⌧ is the temperature scaling. How-
ever, with a large vocabulary (action space) of 146, 347
concepts, it becomes difficult to tune ⌧ so that we sam-
ple the top concepts frequently enough without being too
skewed. Thus, we define a “tiering function” to adjust the
probability mass in specified intervals of our distribution.
Given a sorted discrete probability distribution p, interval
boundaries T0 = 0 < T1 < · · · < Tn, and interval masses
�0, . . . ,�n�1 such that

P
i
�i = 1, tiering computes a

new distribution:
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tier
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pk

for j s.t. Tj  i < Tj+1 (3)

p
tier is a new distribution such that

PTj+1

k=Tj
p

tier = �j . We
use T0 = 0, T1 = 250, T2 = 1,000, T3 = 146,347, �0 =

0.8, �1 = 0.1, and �2 = 0.1. Simply put: we give the
highest-ranked 250 concepts 80% of the probability mass,
the next 750 concepts 10%, and all remaining concepts 10%.
Figure 3 shows that tiering the scaled softmax distribution
samples frequently enough from the top concepts while a
vanilla scaled softmax distribution does not.

3. Experimental Setting
3.1. Self-supervised Exploration

We assume that we have an unlabeled target dataset of im-
ages for which we would like to learn useful visual features.
We compare three methods:

1. Random: sample concepts uniformly from the vocab.
2. Ours: sample concepts from our learned distribution.
3. Ours++: additionally use GPT-generated descriptors.

3.2. Label Set-guided Exploration

We may sometimes know the set of labels for our task (e.g.,
“golden retriever”, etc.) even if we do not have image-label
pairs. Knowing the label set greatly accelerates learning on
the Internet, because it acts as a strong prior on what could
be useful. Using our text similarity model, we reduce the
size of the vocabulary by selecting the top 10% (14,635 con-
cepts) with the largest average top-k similarity to the label
set in text embedding space. We set k to a third of the size of
the label set to reduce the impact of outliers. Reducing the
size of the vocabulary strengthens our baselines by ensuring
that they only search for potentially useful concepts. We
compare 4 methods:

1. Labels: only search for labels.
2. Labels + relevant: search for labels half of the time,

and random concepts from the pruned vocabulary the
other half of the time.

3. Ours: sample labels half of the time and sample from
our learned concept distribution the other half.

4. Ours++: additionally use GPT-generated descriptors.

We call this setting “label set-guided,” since we have addi-
tional supervision in the form of the label set.

3.3. Datasets and Metrics

We evaluate Internet Explorer on 4 popular small-scale
fine-grained classification datasets: Birdsnap (Berg et al.,
2014), Flowers-102 (Nilsback & Zisserman, 2008), Food101
(Bossard et al., 2014), and Oxford-IIT Pets (Parkhi et al.,
2012). We also evaluate on Pascal VOC 2007 (Cls) (Evering-
ham et al., 2010), a coarse-grained multi-label classification
task. Finally, we try fMoW (Christie et al., 2018), a satellite
domain classification task. These small datasets consist of
2,040 to 75,750 training examples, making them ideal for
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Internet Explorer: Targeted Representation Learning on the Open Web 2

Model Birdsnap Flowers Food Pets VOC2007 fMoW Images GPU-hours

Fixed dataset, language supervision
CLIP ResNet-50 (oracle & 2x params) 57.1 96.0 86.4 88.4 86.7 37.5 400⇥ 106 4,000

Fixed dataset, self-supervised
MoCo-v3 (ImageNet pre-train) 26.8 83.2 70.5 79.6 � 32.6 1.2⇥ 106 72
MoCo-v3 (ImageNet + target) 39.9 94.6 78.3 85.3 58.0† 48.8 1.2⇥ 106 72 + 12

No label set information
Random exploration 39.6 (�0.3) 95.3 (+0.7) 77.0 (�1.3) 85.6 (+0.3) 70.2 (+12.2) � 2.2⇥ 106 84 + 40
Ours 43.4 (+3.5) 97.1 (+2.5) 80.5 (+2.2) 86.8 (+1.5) 68.5 (+10.5) � 2.2⇥ 106 84 + 40
Ours++ 54.4 (+14.5) 98.4 (+3.8) 82.2 (+3.9) 89.6 (+4.3) 80.1 (+22.1) � 2.2⇥ 106 84 + 40

Use label set information
Search labels only 47.1 (+7.2) 96.3 (+1.7) 80.9 (+2.6) 85.7 (+0.4) 61.8 (+3.8) 49.3 (+0.5) 2.2⇥ 106 84 + 40
Labels + relevant terms 49.9 (+10.0) 98.0 (+3.4) 81.2 (+2.9) 87.0 (+1.7) 67.5 (+9.5) � 2.2⇥ 106 84 + 40
Ours 52.0 (+12.1) 97.6 (+3.0) 81.2 (+2.9) 87.3 (+2.0) 70.3 (+14.3) � 2.2⇥ 106 84 + 40
Ours++ 62.8 (+22.9) 99.1 (+4.5) 84.6 (+6.3) 90.8 (+5.5) 79.6 (+21.6) 50.6 (+1.8) 2.2⇥ 106 84 + 40

Table 1. Linear probing accuracy. Our method significantly improves the starting checkpoint performance in just 40 additional hours of

training. We show the performance change from the starting MoCo-v3 (ImageNet + target) initialization in green/red. CLIP numbers

correspond to linear probe (which is higher than its zero-shot accuracy). Internet Explorer reaches or often surpasses CLIP (oracle with 2x

params) performance on each dataset while using 2.5% as much compute and 0.5% as much data.
†
For VOC2007, we do not do ImageNet

pre-training because ImageNet is too close to VOC2007.

Birdsnap Flowers Food Pets VOC2007 Images Downloaded

Target test set size 1849 6142 25246 3663 4952 �
No exploration

Target training set overlap 1 (0.05%) 5 (0.01%) 34 (0.13%) 21 (0.57%) 0 (0.00%) �
Internet Explorer

Ours++ (no label set) 28(+1.46%) 11(+0.01%) 35(+0.00%) 26(+0.14%) 1(+0.02%) ⇡ 106

Ours++ (with label set) 57(+3.03%) 27(+0.36%) 35(+0.00%) 43(+0.60%) 1(+0.02%) ⇡ 106

Are we just finding the test images online?
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Deep Learning 

Handcrafted features Model learns 
features

Internet Explorer

Handcrafted dataset

http://internet-explorer-ssl.github.io

Model learns to craft 
its own dataset

http://internet-explorer-ssl.github.io/


Questions?







Bayes’ Rule + Generative Model → Classification!
<latexit sha1_base64="V0oJ3150LYO+7R6wpOwF9KdPYiE="></latexit>

p✓(ci | x) =
p(ci) p✓(x | ci)P
j p(cj) p✓(x | cj)



Bayes’ Rule + Generative Model → Classification!

We use a uniform label distribution and a 
simple approximate ELBO to get:

<latexit sha1_base64="V0oJ3150LYO+7R6wpOwF9KdPYiE="></latexit>

p✓(ci | x) =
p(ci) p✓(x | ci)P
j p(cj) p✓(x | cj)
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We use a uniform label distribution and a 
simple approximate ELBO to get:

<latexit sha1_base64="V0oJ3150LYO+7R6wpOwF9KdPYiE="></latexit>

p✓(ci | x) =
p(ci) p✓(x | ci)P
j p(cj) p✓(x | cj)
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p(ci) =
1

N
<latexit sha1_base64="nwgcdWaI7DXSaK+6bttX85PL4c4="></latexit>

ELBO ⇡ �Et,✏[k✏� ✏✓(xt, ci)k2]
<latexit sha1_base64="FHmR3JtVTOhr8DYC/kg+wEVTY5s=">AAADN3iczVJNb9QwEHXCVwlfWzhysViBWqldJRVfxwqExAWpSGxbaR0ix3G6pk5i2ROUVep/xYW/wQ0uHECIK/8AJ5uisuUH8CRLT29mPG9GkyopDIThZ8+/cPHS5StrV4Nr12/cvDVav71vqlozPmWVrPRhSg2XouRTECD5odKcFqnkB+nx8y5+8J5rI6ryDSwUjwt6VIpcMApOSta9VyohMOdAN0hBYZ7mLbOJwKQQGT5VGrsZPCBUKV01mOSasjbADgR4A72HVvPMLsU+wBtF2u3hg7R9YZMWtpysjJBVaWfk5JTj7T/yqpHGJrB11tUmOXm7ExPb97HB0JCYukje/ReGgmQ0DidhD3yeRAMZowF7yegTySpWF7wEJqkxsyhUELdUg2CS24DUhivKjukRnzla0oKbuO1HtPi+UzKcV9q9EnCvnq1oaWHMokhdZmfarMY68V+xWQ3507gVpaqBl2zZKK8lhgp3R4QzoTkDuXCEMi2cV8zm1N0FuFPrlhCtjnye7O9MoseTR68fjnefDetYQ3fRPbSBIvQE7aKXaA9NEfM+eF+8b953/6P/1f/h/1ym+t5Qcwf9Bf/Xbx7QBMk=</latexit>

p✓(ci | x) ⇡
exp{�Et,✏[k✏� ✏✓(xt, ci)k2]}P
j exp{�Et,✏[k✏� ✏✓(xt, ci)k2]}
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Diffusion Classifier – OOD Generalization

Using Stable Diffusion as an image-text model 

Using Diffusion Transformers (DiT) as 
a class-conditioned diffusion model 

Peebles & Xie. Scalable Diffusion Models with Transformers (DiT)
Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models (Stable Diffusion)



Diffusion Classifier – Compositional Reasoning

"a bird eats a snake" "a snake eats a bird" "there are more 
ladybugs than flowers"

"there are more flowers 
than ladybugs"

✅ Diffusion Classifier  ✅ OpenCLIP ✅ CLIP ✅ Diffusion Classifier  ✅ OpenCLIP  ❌ CLIP

"an old person kisses a 
young person"

"a young person kisses 
an old person"

"the taller person hugs 
the shorter person"

"the shorter person hugs 
the taller person"

✅ Diffusion Classifier ❌ OpenCLIP ❌ CLIP❌ Diffusion Classifier ❌ OpenCLIP  ❌ CLIP

Thrush et al. Winoground: Probing Vision and Language Models for Visio-Linguistic Compositionality



https://diffusion-classifier.github.io/

https://diffusion-classifier.github.io/
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