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Background and Motivation

Standard Transfer Learning Setup
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1. Curate diverse dataset 2. Pre-train 3. Fine-tune on target

e Only data relevant to the target task improves model

generalization, while everything else wastes time and compute!

Case Study: Efficient Pre-training on Flowers1(2

Pre-training Efficiency for Flowers102
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Solution: Open-world Learning on the Internet!

Focus on knowledge gaps

Learn from new data

Two main challenges:
1. How do we handle the trillions of photos on the Internet?
2. Which images are relevant to the target task?

Our solution:

e Query Google Image Search to make exploring the Internet easier.
e Self-supervised 1image score (similarity to target images).

e Use text stmilarity to predict what unseen queries are helpful.

e Self-supervised training on downloaded 1images.

Internet Curiosity Method

Settings
e Self-supervised: only have unlabeled images from the target task.

e Semi-supervised: have unlabeled 1images from the target task, as
well as the label set (e.g., { ‘husky,” ‘chihuahua,” ‘poodle,’ ...})

Method Overview
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1. Sample Query

Learned concept distribution

Random &
Descrlptor =

BMW, dalsy, ..., golden retriever
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Taréét Dataset

Contrastive
Loss

Increase probability of useful concepts
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» Reward for a candidate representation x; is —dcos(4, ¥;), where y;
1s 1ts nearest neighbor in the target representations.
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Britannica Encyclopedia Corpus (no knowledge of label set)
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e Vocabularies are 5% class labels, 95% random Britannica nouns
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Wordnet Corpus (with knowledge of label set)
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