

Internet Curiosity: Directed Learning on Uncurated Internet Data

Carnegie Mellon University

Alexander C. Li*1, Ellis Brown*1, Alexei A. Efros2, Deepak Pathak1 Carnegie Mellon University, 2UC Berkeley, *equal contribution

Background and Motivation

Standard Transfer Learning Setup

- 1. Curate diverse dataset
- 2. Pre-train

3. Fine-tune on target

• Only data relevant to the target task improves model generalization, while everything else wastes time and compute!

Case Study: Efficient Pre-training on Flowers102

Pre-training Dataset	
Flowers	ImageNet
2040	1.28M
25k	500k
79.6%	74.6%
	Flowers 2040 25k

Solution: Open-world Learning on the Internet!

Two main challenges:

- 1. How do we handle the trillions of photos on the Internet?
- 2. Which images are relevant to the target task?

Our solution:

- Query Google Image Search to make exploring the Internet easier.
- Self-supervised image score (similarity to target images).
- Use text similarity to predict what unseen queries are helpful.
- Self-supervised training on downloaded images.

Internet Curiosity Method

Settings

- Self-supervised: only have unlabeled images from the target task.
- Semi-supervised: have unlabeled images from the target task, as well as the label set (e.g., {'husky,' 'chihuahua,' 'poodle,' ...})

Method Overview

Self-supervised Image Relevance Score

• Reward for a candidate representation x_i is $-d_{\cos}(x_i, y_j)$, where y_j is its nearest neighbor in the target representations.

Results

Britannica Encyclopedia Corpus (no knowledge of label set)

• Vocabularies are 5% class labels, 95% random Britannica nouns

Discovered Category Probabilities

Wordnet Corpus (with knowledge of label set)

