research

My research interests lie at the intersection of deep learning, computer vision, and robotics—particularly in the areas of (multimodal) representation learning, self-supervised learning, open-endedness, and agents.

Publications

2025

  1. arXiv
    SAT.jpg
    SAT: Dynamic Spatial Aptitude Training for Multimodal Language Models
    Arijit Ray, Jiafei DuanEllis Brown, Reuben Tan, Dina Bashkirova, Rose Hendrix, Kiana Ehsani, Aniruddha Kembhavi, Bryan A. Plummer, Ranjay Krishna, Kuo-Hao Zeng, and Kate Saenko
    arXiv [cs.CV], 2025

2024

  1. Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs
    Shengbang Tong*Ellis Brown*, Penghao Wu*, Sanghyun Woo, Manoj Middepogu, Sai Charitha Akula, Jihan YangShusheng Yang, Adithya Iyer, Xichen Pan, Ziteng Wang, Rob FergusYann LeCun, and Saining Xie
    In NeurIPS, 2024
  2. V-IRL: Grounding Virtual Intelligence in Real Life
    Jihan Yang, Runyu Ding, Ellis Brown, Xiaojuan Qi, and Saining Xie
    In ECCV, 2024

2023

  1. Thesis
    Online Representation Learning on the Open Web
    Ellis Brown
    Carnegie Mellon University, 2023
    Master’s Thesis. Committee: Deepak Pathak, Alexei Efros, and Deva Ramanan
  2. Your Diffusion Model is Secretly a Zero-Shot Classifier
    In ICCV, 2023
  3. Internet Explorer: Targeted Representation Learning on the Open Web
    In ICML, 2023

2022

  1. Internet Curiosity: Directed Unsupervised Learning on Uncurated Internet Data
    In ECCV Workshop on “Self Supervised Learning: What is Next?”, 2022

2018

  1. An Architecture for Spatiotemporal Template-Based Search
    Ellis Brown, Soobeen Park, Noel Wardord, Adriane Seiffert, Kazuhiko Kawamura, Joseph Lappin , and Maithilee Kunda
    Advances in Cognitive Systems, 2018
  2. SpatioTemporal Template-based Search: An Architecture for Spatiotemporal Template-Based Search
    Ellis Brown, Soobeen Park, Noel Warford, Adriane Seiffert, Kazuhiko Kawamura, Joe Lappin , and Maithilee Kunda
    In Advances in Cognitive Systems, Aug 2018



Talks

2021

  1. Linearly Constrained Separable Optimization
    Ellis Brown, Nicholas Moehle, and Mykel J. Kochenderfer
    In JuliaCon 2021 JuMP Track, Jul 2021

2019

  1. Modeling Uncertainty in Bayesian Neural Networks with Dropout: The effect of weight prior and network architecture selection
    Ellis Brown*, Melanie Manko*, and Ethan Matlin*
    In American Indian Science and Engineering Society National Conference, Oct 2019

2017

  1. Computational Cognitive Systems to Model Information Salience
    Ellis Brown, Adriane Seiffert, Noel Warford, Soobeen Park , and Maithilee Kunda
    In American Indian Science and Engineering Society National Conference, Sep 2017