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@ Neural Networks are really good at predicting stuff
@ But what about when they're wrong?
@ We want to know something about the certainty of a NN's prediction.

@ A natural framework for modelling uncertainty is the Bayesian
paradigm.
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Experiment 1: Why Uncertainty Matters
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Figure: ReLU Network with 5 Hidden Layers and 1024 neurons per layer
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But you just fabricated an example to fit your story...

Uncertainty following the Great Recession: Gross Domestic Product
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Figure: ReLU Network with 5 Hidden Layers and 1024 neurons per layer
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Experiment 2: But what about Softmax? Doesn't that

give uncertainty?

f(x) a(f(x))
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Experiment 2: But what about Softmax? Doesn't that
give uncertainty?

Ellis Brown, Melanie Manko, Ethan Matlin ((Modelling Uncertainty with Bayesian Neural I September 21, 2020 6 /19



© Neural Networks Need Better Notions of Uncertainty v/

@ Methods of Reasoning about Uncertainty

o Infinite Bayesian NN <= Gaussian Process
o Finite Bayesian NN: Use Numerical Techniques (MCMC, Variational
Inference, Dropout)

© How do priors on the weights translate to priors on functions?
@ Activation Functions and the Posterior Distribution
© Shortfalls of the Approach
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Bayesian Neural Networks and Gaussian Processes

o Infinite neural network <= Gaussian Process (Neal [1995], Williams
[1998])

o 1 hidden layer
o Bounded nonlinearites

o Weights (uj and vj) are i.i.d with zero mean and finite variance

H I
fu(x) = Z ijU(Z u;jx;) (1)

o Central Limit Theorem = fi(x) ~ N (0,02 + Ho2V(x))

e V/(x) is the covariance function of the Gaussian Process
corresponding to the network.
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Specific Covariance Functions (Williams [1998])

Gaussian Nonlinearity in NN <= Scaled Squared Exponential in GP
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Sigmoid Nonlinearity in NN <= ArcSin Covariance Function in GP
1 2x Ty X!
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Experiment 3: In practice though we have only finite
Networks

(a) NN (Gaussian Nonlinearity, 1 (b) NN (Gaussian Nonlinearity, 5

Hidden Layer); Hidden Layers);
GP (Squared Exponential GP (Squared Exponential
Covariance) Covariance)
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@ How to evaluate a finite NN?
e Monte Carlo techniques: HMC, RWMH, SMC, etc. Neal [1995]
o Variational Inference: Barber & Bishop [1998], Graves [2011], Blundell
et al. [2015]

o Dropout is equivalent to Variational Inference in Gaussian
Processes (Gal [2016], Gal & Ghahramani [2015b], Gal &
Ghahramani [2016a], Gal & Ghahramani [2016b], Gal & Ghahramani
[2015a])

o Used as a regularization technique [Hinton et al. [2012], Srivastava

et al. [2014]]
o Intuitively, makes sense as a way to get a distribution with uncertainty.
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Theory: Dropout <= Variational Inference

NN Variational Inference Objective Function:

L= _% Z log p(y,-|fg(>"'€)) + KL(gx()[|p(9)) (2)
i€eS

NN Loss Function:

L = —log p(y|F&1)) + const. + || WAl| + Aol [Wall + Xs] bl (3)

KL condition:

0

=7 KL(QA(0)[Ip(9))

90 | WAl + A2|[Wa + Az|[b]| (4)

0
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= the two are equivalent.
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Experiment 4: What prior should | choose? How do weight

priors correspond to function priors?

W ~ N (0,0.05) W ~ Unif [~0.05, 0.05]

Figure: ReLU (Untrained), 5 Hidden Layers, 1024 neurons per layer
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Experiment 5: Activation Functions and Uncertainty
Estimates

Figure: Linear; 5 Hidden Layers, 1024 Neurons per Layer
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Experiment 5: Activation Functions and Uncertainty

Estimates
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Experiment 5: What Activation Function?
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Figure: Softplus; 5 Hidden Layers; 1024 Neurons per Layer
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Experiment 5: What Activation Function?
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Figure: Softplus; 5 Hidden Layers; 1024 Neurons per Layer
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Experiment 6: |s the Network Really Learning Uncertainty

as it Trains?

ReLU Glorot Normal Prior
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