
Scaling Interpretable Reinforcement Learning via Decision Trees

Ellis Brown
elbrown

December 10, 2021

Abstract

Deep reinforcement learning is a powerful tool for learning complex control tasks; however,
neural networks are notoriously “black boxes” and lack many properties desirable of autonymous
systems deployed in safety critical environments. In this project, we focus on methods that result
in a final control policy specified via a decision tree—which is thus interpretable and verifiable.
We build upon a prior method, VIPER, that first learns a high-performing “expert” policy
via any standard Deep RL technique, and then distills the expert policy into a decision tree.
Our method, called MSVIPER, is specifically designed to scale to complex environements that
greatly benefit from (or require) curriculum learning to be solved; we leverage the structure in the
currculum stages to enable more efficient learning and a smaller (and thus more interpretable)
decision tree. To demonstrate the ability of our method to succeed in complex environments, we
apply it to Minecraft—a challenging open-world environment. We highlight that our method is
amennable to post-training verification and modification or improvement.

1 Introduction

The last decade or so has seen a boom in Reinforcement Learning (RL), largely spurred by the
application of growing advances in deep learning. Deep RL has been successfully applied to solve
various simulated tasks [12, 15] with superhuman ability, and has great potential to transform
various real-world control tasks in the coming years. Many of society’s most safety-critical tasks
are performed by humans, such as driving, air traffic control, and emergency response. If deep RL
could achieve superhuman performance on such important real-world tasks, it would constitute a
substantial advance for modern society.

The success of deep learning is due to the application the massive amounts of computational
power and data available today to Neural Networks (NNs). NNs are made up of layers of several
“neurons” (perceptrons) whose activations are passed through a nonlinear function and fed to
each neuron in the subsequent layer. An input-output mapping is learned via the weightings
between neurons using data. This structure can be extended both in terms of the number of
layers and the number of neurons in each layer to capture complex relationships; notably, NNs
are known to be universal function approximators. The complex structure that gives rise to this
great representational power makes it nearly impossible to understand the inner workings that lead
to an output; they are notorious “black boxes.” This does not bode well for their application in
our desired safety-critical situations, which require properties such as, interpretability, verifiability,
and robustness guarantees to be properly trusted. A growing concern is that autonomous systems
based upon NNs that are deployed in the real-world will introduce (potentially immense) risk due
to these shortfalls.

Of course there is enormous interest in address these limitations. There is a growing body of
work aiming to do so generally and in RL. However these efforts are still in their infancy, and

1



the world is increasingly pushing towards the deployment of autonomous systems—just look at
the buzz around self-driving today. We are interested alternative approaches to attempting direct
interpretation of neural network policies themselves; specifically, we focus on approaches that result
in policies represented by decision trees.

Decision trees are one of the most widely understood “interpretable” methods in machine learn-
ing, and are widely regarded for the various properties we desire of safety-critical systems. Decision
trees have similar representation power to NNs; they are nonparametric, and can be extended to
arbitrary depth to represent arbitrary functions (though we prefer smaller trees for our purposes, as
they are more interpretable). The main challenge with using decision trees is that they are signifi-
cantly more dificult to train than NNs; making it very difficult to practically arrive at a successful
control policy.

One recent approach called VIPER [2] aims to leverages the learning abilities of NNs and result
in a similarly capable final policy represented by a decision tree—thus overcoming the primary
challenge of using decision trees in RL (see (2.1.1)). VIPER’s benefits have been displayed on toy
problems such as Cartpole [4] and Atari Pong [2], but it is decidedly still a proof-of-concept; it has
unfortunately not yet been successfully applied to moderately complex environements (much less
those with comparable complexity to the real world).

Taking this as inspiration, MSVIPER is an extension of VIPER explicitly designed to scale to
complex environments that require curriculum learning to be solved (see (3.1)). The curriculum
is first used to learn the expert policy using any RL method; the currculum is then again used to
produce a better performing and smaller tree policy, with lower sample complexity than standard
VIPER.

In order to display the ability of MSVIPER to scale to complex environements, this project
seeks to apply it to Minecraft—a challenging environment with sparse rewards and many innate
task hierarchies and subgoals (see 2.2). Players in Minecraft navigate a 3D open-world environment
in first-person, pursuing various goals primarily centered around collecting resources and crafting
increasingly complex items. Tasks defined in Minecraft present a challenge several orders of mag-
nitude more complex than the toy problems VIPER has been applied to. Parallel work applies this
methodology to robot navigation in real-world crowds.

2 Background

2.1 Interpretability

There are a number of recent approaches towards interpreting [6] and verifying [10] NNs. This work
is still largely limited, however NNs are often still often preferred due to their performance and
broad applicability. Recent work shows that their performance advantages over other methods is
not due to better representative power, but rather simply the fact that they are better regularized
and therefore easier to train [1].

Decision trees are one of the primary tools used in situations where interpretability is paramount.
Their tree structure is inherently interpretable to humans, and they are able to capture much more
complex relationships between variables than other popular “interpretable” methods can (e.g.,
linear models). Previous work has used decision trees in conjunction with RL. The challenge with
decision trees is they are difficult to train, espcially in complex settings like RL.

2



2.1.1 VIPER

We choose to build upon VIPER1 [2], which combines ideas from model compression and imitation
learning to provide great flexibility and final interpretability advantages. Unlike other methods,
VIPER allows the use of any method to learn the expert policy—allowing us to take advantage of
the benefits of NNs. Furthermore, it results in a single decision tree, which has benefits in terms
of interpretability and verifiability.

In VIPER, a neural network expert policy is first learned to solve the desired task. This
expert is then used to learn a “good” decision tree policy through an extension of the popular
DAGGER imitation learning algorithm [13] that utilizes the expert’s Q-value estimates. VIPER
learns relatively small decision tree policies (< 1000 nodes) that exhibit strong performance on a
number of toy examples.

Unfortunately, VIPER has only yet been applied to such toy examples and fails to scale to more
complex tasks. Though it has several properties attractive for our use case, it is far from being
ready for usage in the real world.

2.2 Minecraft

Minecraft serves as a rich and challenging setting for RL. It is a complex open-world environment
with intricate task hierarchies and subgoals centered around obtaining resources and crafting items.

2.2.1 MineRL

A group of researchers at Carnegie Mellon have created a flexible framework to define RL environe-
ments and tasks for Minecraft called MineRL [7]. MineRL interfaces with the Malmo Minecraft
framework [9] to construct and control a Minecraft simulation, and integrates with the widely
used OpenAI Gym RL framework [5]. It provides functionality to specify custom environements,
with control over aspects such as terrain characteristics, spawn location and inventory, and reward
schedule.

3 Methods

3.1 MSVIPER

MSVIPER2 is an extension of VIPER that is specifically designed to scale to complex environments
that greatly benefit from (or require) Curriculum Learning (CL) to be solved. In the first phase,
CL is leveraged to enable an expert policy to be learned via any RL method. Our expert policies
are trained using PPO [14] or A2C [11] The second phase leverages the inherent structure in the
curriculum stages to improve upon VIPER’s decision tree policy distillation. MSVIPER is more
sample efficient and outputs a “better” tree policy—that is better performing and smaller.

3.1.1 Learning via Curriculum

To enable better learning and generalization improvements, CL introduces examples to learning
algorithms in a meaningful order that gradually illustrates more concepts, and gradually more
complex ones [3].

1Verifiability via Iterative Policy ExtRaction
2Multiple Scenario VIPER

3



(a) Agents initialized in the environment (b) Agents reaching trees

Figure 1: POV of eight Minecraft agents during training of the Reach Tree curriculum stage. In
(a), we see the viewpoint of the agents just after initialization in the environment. In (b), we see
that the agents have learned to reach trees—although not cut them down, yet.

To train the expert agent using CL, we trained in a succession of sub-tasks (defined as Gym
environments) of increasing difficulty rather than just once on the final task itself. The policy
learned in each sub-task is reused as the initialization for the subsequent stage. By breaking the
task into well-scoped sub-tasks, CL makes it easier to learn a good policy. As noted earlier, the
primary challenge with decision tree policies is that they are difficult to train, so this property is
also particularly useful in the next phase.

3.1.2 Distillation to a Decision Tree

MSVIPER improves the process of distilling the expert policy to a decision tree policy using inspira-
tion from CL. At a high level, this phase consists of generating trajectories (sequences of state-action
pairs) and then training a decision tree policy on the trajectories using imitation learning.

Applying ideas from CL to imitation learning is not straightforward. Imitation learning uses
expert demonstrations from a single task (here, the final) to train a policy. However in our case,
we have the expert policy and each of the curriculum stages it was trained upon! We use the final
expert to generate imitation learning trajectories in each of the curriculum stages used to train
it in the first place. We then train the decision tree policy on a curriculum of trajectories from
each stage. The variety in this curriculum and the simulation environment itself ensures that the
decision trees that are trained on trajectory samples are more robust to various scenarios that
might be encountered at test time.

3.2 Task: Obtain Wooden Pickaxe

The task we designed is to obtain a wooden pickaxe after being spawned in a forest with no items.
Agents can craft simple items in a 2× 2 grid on their own; they must craft a crafting table and use
it to craft more complex items in a 3× 3 grid. The crafting recipe is depicted in Figure 2.

4



1. Craft 12 planks using 3 logs
2. Craft 1 crafting table using 4 planks
3. Craft 4 sticks using 2 planks (via crafting table)
4. Craft 1 wooden pickaxe using 2 sticks + 3 planks

(via crafting table)

(a) Wooden Pickaxe Crafting Recipe (b) 3× 3 crafting grid

Figure 2: Crafting a Wooden Pickaxe

3.2.1 Curriculum

1. Navigate to trees (see Figure 1)
2. Chop down trees to obtain wood
3. Craft a crafting table
4. Use table to craft sticks
5. Use table to craft a wooden pickaxe

Figure 3: Curriculum Stages

The only naturally occuring resource an agent needs to
acquire to achieve this task is logs, which are obtained
by chopping down trees (facing trees and attacking for
several seconds). The curriculum stages for the Obtain
Wooden Pickaxe task are listed in Figure 3.

3.3 Results

Work on this project has gone towards (i) using Min-
eRL to design Gym environments for each sub-task
(each with their own defintion, rewards schedule, etc.),
(ii) constructing preprocessers to transform the raw observations from the MineRL engine into a
form easily consumable by a decision tree, (iii) and on training expert neural network policies to
solve the tasks. Mean reward from a training run on the first curriculum stage are displayed in
Figure 4.

Figure 4: Training curve from an A2C ex-
pert agent on the tree-reaching curriculum
stage. Each step on the graph is 10,000
gradient steps.

As it turns out, hand designing good environments
(with well-shaped rewards) is much easier said than
done. The neural network policies turned out to be
good at finding and exploiting imperfections in envi-
ronment specifications that gave them reward without
necessarily solving the task (“reward hacking” [8]). Un-
fortunately training policies here is a computationally
heavy endeavor. We train agents for 2 million gradient
steps, with 8 agents collecting training samples in par-
allel, which takes a around 8 hours per run (making the
iteration process relatively delayed). After several iter-
artions of these three phases, we were unfortunately
unable to get to the second phase of MSVIPER—
distillation to tree policy.

Acknowledgements

Aaron M. Roth, a former CMU MSR student and current UMD PhD student, conceived of
MSVIPER and showed initial results in robot navigation. EB would like to thank him for his
mentorship and advice throughout this project.

5



References

[1] J. Ba and R. Caruana. Do deep nets really need to be deep? In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems, volume 27. Curran Associates, Inc., 2014.

[2] O. Bastani, Y. Pu, and A. Solar-Lezama. Verifiable reinforcement learning via policy extrac-
tion. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 31. Curran Associates,
Inc., 2018.

[3] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Proceedings of
the 26th Annual International Conference on Machine Learning, ICML ’09, page 41–48, New
York, NY, USA, 2009. Association for Computing Machinery.

[4] S. Bhupatiraju, K. K. Agrawal, and R. Singh. Towards mixed optimization for reinforcement
learning with program synthesis. July 2018.

[5] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
OpenAI gym. June 2016.

[6] F. Doshi-Velez and B. Kim. Towards a rigorous science of interpretable machine learning. Feb.
2017.

[7] W. H. Guss, C. Codel, K. Hofmann, B. Houghton, N. Kuno, S. Milani, S. Mohanty, D. P.
Liebana, R. Salakhutdinov, N. Topin, et al. The MineRL competition on sample efficient
reinforcement learning using human priors. NeurIPS Competition Track, 2019.

[8] D. Hadfield-Menell, S. Milli, P. Abbeel, S. Russell, and A. Dragan. Inverse reward design,
2020.

[9] M. Johnson, K. Hofmann, T. Hutton, D. Bignell, and K. Hofmann. The malmo platform
for artificial intelligence experimentation. In 25th International Joint Conference on Artificial
Intelligence (IJCAI-16). AAAI - Association for the Advancement of Artificial Intelligence,
July 2016.

[10] C. Liu, T. Arnon, C. Lazarus, C. Strong, C. Barrett, and M. J. Kochenderfer. Algorithms for
verifying deep neural networks, 2020.

[11] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In M. F. Balcan
and K. Q. Weinberger, editors, Proceedings of The 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning Research, pages 1928–1937, New
York, New York, USA, 20–22 Jun 2016. PMLR.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, Feb. 2015.

[13] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction
to no-regret online learning. Proceedings of the fourteenth, 2011.

6



[14] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. July 2017.

[15] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalch-
brenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the game of go with deep neural networks and tree search. Nature, 529(7587):484–
489, Jan. 2016.

7


	Introduction
	Background
	Interpretability
	VIPER

	Minecraft
	MineRL


	Methods
	MSVIPER
	Learning via Curriculum
	Distillation to a Decision Tree

	Task: Obtain Wooden Pickaxe
	Curriculum

	Results


