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Abstract

This paper presents a method to determine an optimal policy for the lending of
securities by large institutions in the securities finance market as a final project
for the Stanford University AA222 Engineering Design Optimization class. The
securities lending process is formulated as a Markov decision process in which
the lender decides whether to accept or reject incoming offers from borrowers.
This formulation allows for a policy that maximizes the expected return with each
decision to be derived using dynamic programming. The framework presented is
easily extensible through the creation of more realistic models of the dynamics of
the securities lending market.

1 Introduction

The financial world has been taken over by Exchange Traded Funds (ETFs) over the past decade;
ETFs currently account for nearly half of all trading activity in the United States stock markets [10].
Along the way, a fee war has been incited between major ETF providers vying for market share.
With pressure to drive down fees, securities lending—already vital to various financial domains in its
own right—has been thrust into a new echelon of importance, as it is one of the primary ways that
these providers can offset their operational costs and afford to reduce fees [12]. In order to increase
their trading capacity and maximize lending revenue, lenders have increasingly turned to automatic
systems to augment their manual operations.

Automatic lending systems today have snowballed into thousands of lines of complex business logic,
containing rules that attempt to capture the distilled knowledge of traders and domain experts over
the past few decades. As the process of making a lending decision is extremely complex, new edge
cases and inefficiencies in the systems materialize regularly and are patched with even more rules.
Although these archaic systems are known to be suboptimal, they handle more than half of overall
lending volume in some cases. The quality of the decisions that these automatic lending systems make
is a limiting factor to the continued growth and competitiveness of major ETF providers; developing
a better and more scalable solution is essential to their future prosperity.

In this paper, we propose a framework that allows us to dispense with codified business logic, and
solve directly for a policy that maximizes expected return. After imposing a series of simplifying
assumptions, we formulate the decision to lend securities as a Markov decision process (MDP) that
depends on the dynamics of the securities lending market. We can solve such problems using dynamic
programming techniques developed by R. Bellman in the 1950s [4]. We present initial results of
modeling the distribution of offers from borrowers and solving the formulation using value iteration.
This framework is intended to be extended with models that relax our simplifying assumptions and
better represent reality in order to develop real world policies.
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2 Background

An ETF is an investment fund—a managed portfolio of securities that investors collectively own—that
is traded on an exchange just like a regular security, allowing much greater flexibility to investors
than comparable fund types (e.g., mutual funds). ETFs are most often passively managed—designed
to proportionally track some index (essentially a weighted collection of securities, e.g., the S&P 500).
The extremely low management fees—due to the minimal costs of passive management, high tax
efficiency, and economies of scale—charged by ETFs is their primary advantage to investors beyond
the flexibility of intraday trading. As ETF providers must hold the amount of underlying securities
that make up the total value of all shares of the fund on the market, they end up with a profusion of
holdings. The biggest ETFs currently are each composed of more than $100B worth of securities;
the market is dominated by a few giants who manage the majority funds and upwards of $1T each
[1, 2, 7]. These giant providers face stiff competition over fees, and have huge incentive to maximally
utilize their massive inventories through securities lending in order to offset expenses and maintain
competitive pricing.

2.1 Securities Lending

The securities lending process allows owners of securities can earn extra income by lending portions
of their holdings out for a fee. The security being lent can be any type of financial instrument, such
as stocks, bonds, treasuries, or mortgage-backed securities. A securities loan primarily involves two
parties: borrowers and lenders. Borrowers are typically broker-dealers who need securities in order
to perform an advanced investment strategy, such as short selling. Lenders are typically large asset-
managers or commercial banks who have significant lending operations in place. These operations
span seeking out a borrower, negotiating the terms of the loan (such as the fee, duration, and quantity),
and facilitating the transfer of securities. Lenders often lend out securities not only on their own
behalf, but also on the behalf of third-party investors—such as investment funds, endowments, or
insurance companies—as a service. The incentive to lend stems from the guaranteed fee income and
controlled risk offered by the lending agreement. [8]

Security loans are typically initiated by the borrower. The lender and borrower negotiate the terms
of the loan, including the quantity of securities being borrowed, the lending fee, the duration of the
loan, and the nature of the collateral. Before receipt of the lent securities, the borrower must send
other securities or cash as collateral to the lender; the value of collateral is typically a minimum of
102% of the market value of the securities to be lent [8]. Throughout the duration of the loan, the
borrower is free to use the securities however they please—as long as they return the same quantity
of the particular security at the end. The borrower typically uses the borrowed securities in order to
execute an advanced trading strategy, such as a short. The lender typically reinvests the collateral
in low risk investments to earn a small profit. At the end of the duration of the loan, the two parties
swap back the securities and collateral, and the borrower pays the lender the predetermined fee.

The fee charged in a securities loan is primarily supply and demand driven, depending on how difficult
it is to borrow the security in question [8]. Greater demand for a particular security by borrowers
enables lenders to charge a price premium; oversupply by lenders forces them to charge a discounted
price. Some securities that are highly available and identically substitutable (e.g., treasuries with
the same maturity) earn special designation as general collateral (GC). Borrowers are indifferent to
which GC security they receive (because they are interchangeable), and so the fee for such assets
is a driven by the cost of borrowing cash rather than by supply/demand of the security [3]. The fee
attainable by lending GC securities also garners special designation as the GC rate. The basket of
securities considered GC, along with the GC rate, are determined by market consensus and are in
constant gradual flux.

2.2 Automatic Lending

In order make extra money by lending more of their available inventory, lenders have built systems
that can automatically lend out securities. Lenders generally automatically accept all requests to
borrow GC assets at the GC rate determined by the market. This is done via a simple system that
plugs in directly to the electronic exchange. As lenders are able to charge significantly higher fees for
non-GC assets, almost all effort is allocated to handling such assets appropriately. For the remainder
of this paper, it can be assumed that the securities in question are non-GC unless otherwise specified.
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Automatic lending systems today primarily use business logic codified by traders and other securities
lending domain experts. Many of these systems were created 1–2 decades ago, and have since
changed little beyond the steady addition of supplementary rules. These legacy systems are currently
used to automatically lend assets on the lower end of the demand/fee spectrum, leaving the most
important decisions for the traders to make manually. Though a significant volume of loans are filled
by these systems, they are known to be suboptimal and are a huge limiting factor on the efficacy of
securities lending operations. An optimized system would not only enable greater revenue on the
subset of loans currently being processed by the legacy systems, it would also enable a wider scope
of assets (those with higher demand and thus possible fees) to be automatically lent out. This would
additionally free up the human traders to allocate more time to the most important offers.

3 Problem Formulation

We first make a series of simplifying assumptions in order to appropriately frame the securities
lending problem. We then formulate finding an optimal lending policy as a dynamic programming
problem.

3.1 Simplifying Assumptions

We will operate throughout the remainder of this paper from the viewpoint of the lender under the
following simplifying assumptions:

• We receive incoming offers to borrow a given security from potential borrowers. The offer
contains the desired:

– amount of securities to borrow a

– price (fee) of the loan p

• We have a lendable inventory of the given security q

• We can choose to either:

– accept the offer, earning the specified fee but reducing our lendable inventory
– reject the offer, waiting to lend our inventory later at a higher price

• The borrower will hold the borrowed securities for some duration d

• Our objective is to maximize the expected future return of lending out securities.

3.2 Distribution Models

We need to model the following distributions:

1. Offer distribution: the joint distribution of offers (irrespective of our acceptance/denial)

P (p, a) (1)

2. Inventory model: the conditional distribution of inventory, giving the probability of ending up
with quantity q′ at the next decision stage given the current quantity q. Changes in inventory
can occur from borrowers redeeming outstanding loans and returning the borrowed securities,
or for various operational reasons.

P (q′ | q) (2)

3. Duration model: the conditional distribution of a borrower holding a securities at price p for
duration d

P (d | p, a) (3)

To increase the realism of these models, we can include additional features (e.g., an indicator of
external market conditions) during the modeling process and then condition on the observed values
of the features at decision time.
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3.3 Dynamic Programming Problem

We use the stated assumptions and the aforementioned distribution models to formulate the securities
lending policy optimization problem as an infinite horizon dynamic programming problem. We define
the following:

• The state of the system at each decision stage consists of of the incoming offer p, a and our
current inventory q. The state s = {p, a, q} lies within the state space S.

• The action act we take at each decision stage lies in the discrete action space A =
{accept, decline}. We can only accept an offer if we have enough inventory q ≥ a.

• The discount rate γ ∈ [0, 1] determines the rate at which our utility derived from future
states diminishes. When γ = 1, we equally value the utility at all future states; as γ decreases
from 1, we value the utility at future states less.

• The expected discounted duration is the amount of time that we expect for the borrower
to hold a securities at price p

D̄(p, a) =

∞∑
d=0

γdP (d | p, a) (4)

• The action utility function gives the utility (return) associated with taking action act at
state s and then following our policy π. We can only experience a return if we lend. Since
we are not able to accept an offer if we do not have enough inventory, we introduce an
invalid action penalty ρ, which should be some large number (e.g., 1e10)

Q(s, act) =

{
paD̄(p, a)− ρ(q < a) act = accept
0 act = decline

(5)

• The state transition function represents the probability of transitioning to state s′ after
executing action act at state s

T (s′ | s, act) =

{
P (q′, a′)P (q′ | q − a) act = accept
P (q′, a′)P (q′ | q) act = decline

(6)

• The policy π : S → A determines what action act we select at state s.2

With these definitions, we can formulate the expected discounted return of executing policy π from
state s as

V π(s) = Q(s, π(s)) + γ
∑
s′

T (s′ | s, π(s))V π(s′) (7)

We want to find the optimal policy π∗, such that the expected discounted return is maximized:

π∗(s) = arg max
π

V π(s) (8)

4 Method

In this section we show initial distribution modeling results and explain our methodology for finding
an optimal policy.

4.1 Distribution Modeling

In order for our optimized policy to be successful in reality, we need to create realistic models of the
distributions defined in Section 3.2. We expect this to require significant effort, and so again start with
a simple approach and leave improvements to future iterations. We show initial results in modeling
the offer distribution (1) in Section 4.1.1. Due to time constraints, we use simple toy models for

2Note: we are using a stationary policy; future iterations could explore policies that take into account the
past history of states s0:t and actions a0:t.
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Figure 1: We use 5-fold cross validation to select GMM hyperparameters (number of components)
that maximize the log-likelihood. The log-likelihood here is the mean across all folds, evaluated on
the validation set. This search results in n = 26 components.

the inventory (2) and duration (3) models. For the inventory model, we use a truncated3 Normal
distribution centered on the current quantity, with a standard deviation σ = 1. For the expected
discounted duration, we use a simple linear function of price and amount D̄(p, a) = 5+0.05a−0.75p.
We intentionally keep the expected duration low for the sake of easy simulation, real world durations
would be significantly longer.

4.1.1 Offer distribution

We obtained real offer data from BlackRock’s Securities Lending desk. The offer data includes the
price and quantity of shares requested by the borrower. The distribution of each variable is highly
right-skewed, and so we apply a log transformation to each. We then remove offers that contain an
outlier (|Z| > 3) on either value in order to reduce noise. There are explanations for each of the
outliers, and they will need to be addressed by more realistic models.

We fit a Gaussian mixture model (GMM) to our preprocessed data using the Expectation-Maximization
(EM) algorithm. We use k-fold cross validation with 5 folds to select the hyperparameter of our GMM
(see Figure 1) [6]. We evaluate our best model (n = 26 components) on a held out test set, getting a
log-likelihood of −3.67. Figure 2 shows a visualization of the probability distribution obtained.

(a) Contour (b) Surface

Figure 2: The joint probability distribution over offers P (p, a), fit to real data using a GMM with
n = 26 components, selected using cross-validation. Due to the confidential nature of BlackRock’s
data, all value markers are omitted.

3We truncate between 0 and ∞ in order to enforce nonnegativity, as we cannot have negative inventory.
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4.2 Baseline Stochastic Policy

Before developing an intelligent policy, we first create the simplest possible policy in order to serve
as a benchmark. We define a stochastic policy that accept all offers with some fixed probability
φ ∈ [0, 1], assuming there is adequate inventory

πstoch(s) =

{
accept q > a and φ > r

decline otherwise
(9)

for some uniformly distributed random number r ∼ U(0, 1). Note that stochastic policy makes no
regard to the price of the offer, and as such we would expect it to perform very poorly.

4.3 Value Iteration

We want to develop an optimal policy (12). According to Bellman’s principle of optimality, "an
optimal policy has the property that whatever the initial state and initial decision are, the remaining
decisions must constitute an optimal policy with regard to the state resulting from the first decision"
[4]. For infinite horizon problems, like the one in question, this implies that if we can estimate the
optimal expected discounted return (7) of all states attainable from the current state, the action that
leads to the state with maximal return will be the optimal action. Formally, an optimal policy can be
proven to satisfy the Bellman equation [5]

V ∗(s) = max
act

(
Q(s, act) + γ

∑
s′

T (s′ | s, act)V ∗(s′)

)
(10)

Note that V ∗ is a recursion. We can approximate this value using value iteration, which is essentially
just iterative application of (10)

Vk+1(s) = max
act

(
Q(s, act) + γ

∑
s′

T (s′ | s, act)Vk(s′)

)
(11)

until V converges. Value iteration is proven to converge with for any bounded initialization (i.e.,
|V0(s)| < ∞, ∀ s ∈ S) [5]. As our intuition implied, armed with an estimate of V ∗, the optimal
policy is to simply choose the action that leads to the maximal expected discounted return:

π∗(s)← arg max
act

(
Q(s, act) + γ

∑
s′

T (s′ | s, act)V ∗(s′)

)
(12)

(a) Stochastic Policy πstoch (b) Value Iteration Policy π∗

Figure 3: The distribution of revenue received over 1000 simulations of 1000 decision stages per
policy. The stochastic policy is executed with φ = 0.5, making the decision to lend a coin flip. The
mean revenue using our optimal policy is nearly double that of the stochastic policy.
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5 Initial Results

In this section, we present initial results comparing the baseline stochastic policy with our optimal
policy found through value iteration. In order to visualize the policies in action, we run simulations
with initial inventory q = 35, and display the state and rewards over 50 decision stages in Figure 4
(next page). We can see that the optimal policy has learned to decline lowball offers, for example at
decision step 2,5, and 8. This allows it to better utilize the available inventory and earn more revenue.

We compare the revenue of both policies over 1000 simulations in Figure 3. We can see that the
optimal policy learned through value iteration is able to bring in nearly double the revenue compared
to the baseline stochastic policy.

6 Conclusion

The problem of lending securities was formulated as a Markov decision process, in which the lender
decides whether to accept or reject incoming offers from borrowers. This formulation provides a rich
framework upon which we can devise policies that maximize the lenders return through dynamic
programming. It is easily extensible through the creation of more realistic models of the dynamics of
the securities lending market. Initial results of fitting an model of incoming offers to real world data
were shown. Finally, we compared a policy optimized through value iteration to a baseline stochastic
policy in simulation.
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(a) Stochastic Policy πstoch

(b) Value Iteration Policy π∗

Figure 4: Example simulation of both policies. Each plot displays the state (price, amount, quantity)
and revenue at each decision stage. Initial inventory q = 35. Red dots correspond to accepted offers.
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